{"title":"Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation","authors":"","doi":"10.1016/S1872-2067(24)60051-3","DOIUrl":null,"url":null,"abstract":"<div><p>Tuning oxygen vacancy (V<sub>O</sub>) in metal oxides catalysts that efficiently activates O<sub>2</sub> molecule to promote oxidation reactions remains challenging. Herein, transition metal (M = Mn, Co, and Mo) doping was used to moderate the coordination environment of V<sub>O</sub> in La<sub>2</sub>FeMO<sub>6</sub> and promote activity for selective oxidation of hydrogen sulfide (H<sub>2</sub>S). Various techniques reveal that the introduction of Mn and Co forms the homogeneous double perovskite phase, which results in the formation of asymmetric V<sub>O</sub>. Although these asymmetric V<sub>O</sub> are more difficult to form than symmetric Fe-V<sub>O</sub>-Fe due to the shorter bond distance and stronger bond strength of Fe-O, they are more conducive to the dissociation of O<sub>2</sub> molecules. Among them, the formed rich Fe-V<sub>O</sub>-Mn sites from the alternate substitution of Mn to Fe boosted the activation of O<sub>2</sub> molecules of Mn-substituted LaFeO<sub>3</sub>. Therefore, enhanced catalytic activity and outstanding sulfur selectivity were achieved as a result of promoted oxygen mobility and reducibility. This work provides an attractive strategy for rational design of advanced oxidation catalysts.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600513","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Tuning oxygen vacancy (VO) in metal oxides catalysts that efficiently activates O2 molecule to promote oxidation reactions remains challenging. Herein, transition metal (M = Mn, Co, and Mo) doping was used to moderate the coordination environment of VO in La2FeMO6 and promote activity for selective oxidation of hydrogen sulfide (H2S). Various techniques reveal that the introduction of Mn and Co forms the homogeneous double perovskite phase, which results in the formation of asymmetric VO. Although these asymmetric VO are more difficult to form than symmetric Fe-VO-Fe due to the shorter bond distance and stronger bond strength of Fe-O, they are more conducive to the dissociation of O2 molecules. Among them, the formed rich Fe-VO-Mn sites from the alternate substitution of Mn to Fe boosted the activation of O2 molecules of Mn-substituted LaFeO3. Therefore, enhanced catalytic activity and outstanding sulfur selectivity were achieved as a result of promoted oxygen mobility and reducibility. This work provides an attractive strategy for rational design of advanced oxidation catalysts.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.