Qiuyue Gong , Shuo Huang , Haoyu Wang , Lang Wang , Shihan Cao , Xingchen She , Jun Zhang , Zhijun Wang , Jie Li , Hui Liu , Yong Liu , Hui Sun , Dingyu Yang , Xin Liu
{"title":"Effective surface treatment for efficient and stable inverted inorganic CsPbI2Br perovskite solar cells","authors":"Qiuyue Gong , Shuo Huang , Haoyu Wang , Lang Wang , Shihan Cao , Xingchen She , Jun Zhang , Zhijun Wang , Jie Li , Hui Liu , Yong Liu , Hui Sun , Dingyu Yang , Xin Liu","doi":"10.1016/j.orgel.2024.107097","DOIUrl":null,"url":null,"abstract":"<div><p>The interest in all-inorganic perovskite solar cells (PSCs) featuring a p-i-n structure is on the rise, attributed to their superior heat resistance and adaptability with tandem cell methods. However, their progress has been far from the regular structure owing to the comparatively low open circuit voltage (<em>V</em><sub>oc</sub>). This research employs phenylethylammonium iodide, incorporating various side groups, as passivators to tackle the previously mentioned problems and investigate their effects on passivation. It is found that a reduction of trap-state density in perovskite film was accomplished due to the PEAI effective passivation effect by establishing coordination with the under-coordinated Pb<sup>2+</sup> ions. Furthermore, there was an enhancement in the alignment of energy levels at the CsPbI<sub>2</sub>Br perovskite/PCBM junction, resulting in better charge extraction from the CsPbI<sub>2</sub>Br layer to the charge transport layer. As a result, an improved champion efficiency of 14.26 % with a <em>V</em><sub>oc</sub> of 1.11 V, <em>J</em><sub>sc</sub> of 16.21 mA/cm<sup>2</sup>, and FF of 79.28 % was yielded for the PEAI treatment inverted CsPbI<sub>2</sub>Br device, compared with the 12.15 % efficiency of the control device. Superior device stability was exhibited for the optimal PEAI-treated devices without encapsulation. This research validates the significance of a side group on a surface passivation molecule to effectively passivate defects and optimize energy levels, especially for boosting <em>V</em><sub>oc</sub>.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"132 ","pages":"Article 107097"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The interest in all-inorganic perovskite solar cells (PSCs) featuring a p-i-n structure is on the rise, attributed to their superior heat resistance and adaptability with tandem cell methods. However, their progress has been far from the regular structure owing to the comparatively low open circuit voltage (Voc). This research employs phenylethylammonium iodide, incorporating various side groups, as passivators to tackle the previously mentioned problems and investigate their effects on passivation. It is found that a reduction of trap-state density in perovskite film was accomplished due to the PEAI effective passivation effect by establishing coordination with the under-coordinated Pb2+ ions. Furthermore, there was an enhancement in the alignment of energy levels at the CsPbI2Br perovskite/PCBM junction, resulting in better charge extraction from the CsPbI2Br layer to the charge transport layer. As a result, an improved champion efficiency of 14.26 % with a Voc of 1.11 V, Jsc of 16.21 mA/cm2, and FF of 79.28 % was yielded for the PEAI treatment inverted CsPbI2Br device, compared with the 12.15 % efficiency of the control device. Superior device stability was exhibited for the optimal PEAI-treated devices without encapsulation. This research validates the significance of a side group on a surface passivation molecule to effectively passivate defects and optimize energy levels, especially for boosting Voc.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.