{"title":"Toward a unified perspective on assessment models, part I: Foundations of a framework","authors":"Stefano Noventa , Jürgen Heller , Augustin Kelava","doi":"10.1016/j.jmp.2024.102872","DOIUrl":null,"url":null,"abstract":"<div><p>In the past years, several theories for assessment have been developed within the overlapping fields of Psychometrics and Mathematical Psychology. The most notable are Item Response Theory (IRT), Cognitive Diagnostic Assessment (CDA), and Knowledge Structure Theory (KST). In spite of their common goals, these frameworks have been developed largely independently, focusing on slightly different aspects. Yet various connections between them can be found in literature. In this contribution, Part I of a three-part work, a unified perspective is suggested that uses two primitives (structure and process) and two operations (factorization and reparametrization) to derive IRT, CDA, and KST models. A Taxonomy of models is built using a two-processes sequential approach that captures the similarities between the conditional probabilities featured in these models and separates them into a first process modeling the effects of individual ability on item mastering, and a second process representing the effects of pure chance on item solving.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"122 ","pages":"Article 102872"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022249624000415/pdfft?md5=28cc2070f8dcf7f69ed90762b1200a1a&pid=1-s2.0-S0022249624000415-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000415","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the past years, several theories for assessment have been developed within the overlapping fields of Psychometrics and Mathematical Psychology. The most notable are Item Response Theory (IRT), Cognitive Diagnostic Assessment (CDA), and Knowledge Structure Theory (KST). In spite of their common goals, these frameworks have been developed largely independently, focusing on slightly different aspects. Yet various connections between them can be found in literature. In this contribution, Part I of a three-part work, a unified perspective is suggested that uses two primitives (structure and process) and two operations (factorization and reparametrization) to derive IRT, CDA, and KST models. A Taxonomy of models is built using a two-processes sequential approach that captures the similarities between the conditional probabilities featured in these models and separates them into a first process modeling the effects of individual ability on item mastering, and a second process representing the effects of pure chance on item solving.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory