Extracellular vesicles as a hydrolytic platform of secreted phospholipase A2

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Makoto Murakami
{"title":"Extracellular vesicles as a hydrolytic platform of secreted phospholipase A2","authors":"Makoto Murakami","doi":"10.1016/j.bbalip.2024.159536","DOIUrl":null,"url":null,"abstract":"<div><p>Extracellular vesicles (EVs) represent small vesicles secreted from cells, including exosomes (40–150 nm in diameter), which are released via the multivesicular endosomal pathway, and microvesicles and ectosomes (100–1000 nm), which are produced by plasma membrane budding. Broadly, EVs also include vesicles generated from dying cells, such as apoptotic bodies (5–10 μm), as well as exomeres (&lt; 50 nm), which are very small, non-membranous nanoparticles. EVs play important roles in cell-to-cell signaling in various aspects of cancer, immunity, metabolism, and so on by transferring proteins, microRNAs (miRNAs), and metabolites as cargos from donor cells to recipient cells. Although lipids are one of the major components of EVs, they have long been recognized as merely the “wall” that partitions the lumen of the vesicle from the outside. However, it has recently become obvious that lipid composition of EVs influences their properties and functions, that EVs act as a carrier of a variety of lipid mediators, and that lipid mediators are produced in EV membranes by the hydrolytic action of secreted phospholipase A<sub>2</sub>s (sPLA<sub>2</sub>s). In this article, we will make an overview of the roles of lipids in EVs, with a particular focus on sPLA<sub>2</sub>-driven mobilization of lipid mediators from EVs and its biological significance.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 7","pages":"Article 159536"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198124000866/pdfft?md5=9285bd7d715886c2a587b588b34e29e7&pid=1-s2.0-S1388198124000866-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000866","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) represent small vesicles secreted from cells, including exosomes (40–150 nm in diameter), which are released via the multivesicular endosomal pathway, and microvesicles and ectosomes (100–1000 nm), which are produced by plasma membrane budding. Broadly, EVs also include vesicles generated from dying cells, such as apoptotic bodies (5–10 μm), as well as exomeres (< 50 nm), which are very small, non-membranous nanoparticles. EVs play important roles in cell-to-cell signaling in various aspects of cancer, immunity, metabolism, and so on by transferring proteins, microRNAs (miRNAs), and metabolites as cargos from donor cells to recipient cells. Although lipids are one of the major components of EVs, they have long been recognized as merely the “wall” that partitions the lumen of the vesicle from the outside. However, it has recently become obvious that lipid composition of EVs influences their properties and functions, that EVs act as a carrier of a variety of lipid mediators, and that lipid mediators are produced in EV membranes by the hydrolytic action of secreted phospholipase A2s (sPLA2s). In this article, we will make an overview of the roles of lipids in EVs, with a particular focus on sPLA2-driven mobilization of lipid mediators from EVs and its biological significance.

细胞外囊泡是分泌型磷脂酶 A2 的水解平台
细胞外囊泡(EVs)是细胞分泌的小囊泡,包括通过多囊内体途径释放的外泌体(直径 40-150 nm),以及由质膜出芽产生的微囊泡和外泌体(100-1000 nm)。从广义上讲,EVs 还包括凋亡细胞产生的囊泡,如凋亡体(5-10 μm),以及外泌体(50 nm),这是一种非常小的非膜状纳米颗粒。EVs通过将蛋白质、microRNA(miRNA)和代谢物作为载体从供体细胞转移到受体细胞,在癌症、免疫、新陈代谢等各方面的细胞间信号转导中发挥着重要作用。虽然脂质是囊泡的主要成分之一,但长期以来,人们一直认为脂质只是将囊泡内腔与外部隔开的 "壁"。然而,最近人们发现,EVs 的脂质成分会影响其特性和功能,EVs 可作为各种脂质介质的载体,而脂质介质是通过分泌型磷脂酶 A2s(sPLA2s)的水解作用在 EV 膜中产生的。在本文中,我们将概述脂质在 EVs 中的作用,尤其关注 sPLA2 驱动的 EVs 脂质介质动员及其生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信