Density functional theory and molecular dynamics simulations for resistive switching research

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Marco A. Villena , Onurcan Kaya , Udo Schwingenschlögl , Stephan Roche , Mario Lanza
{"title":"Density functional theory and molecular dynamics simulations for resistive switching research","authors":"Marco A. Villena ,&nbsp;Onurcan Kaya ,&nbsp;Udo Schwingenschlögl ,&nbsp;Stephan Roche ,&nbsp;Mario Lanza","doi":"10.1016/j.mser.2024.100825","DOIUrl":null,"url":null,"abstract":"<div><p>Resistive switching (RS) devices, often referred to as memristors, have exhibited interesting electronic performance that could be useful to enhance the capabilities of multiple types of integrated circuits that we use in our daily lives. However, RS devices still do not fulfil the reliability requirements of most commercial applications, mainly because the switching and failure mechanisms are still not fully understood. Density functional theory (DFT) and/or molecular dynamics (MD) are simulations used to describe complex interactions between groups of atoms, and they can be employed to clarify which physical, chemical, thermal and/or electronic phenomena take place during the normal operation of RS devices, which should help to enhance their performance and reliability. In this article, we review which studies have employed DFT and/or MD in the field of RS research, focusing on which methods have been employed and which material properties have been calculated. The goal of this article is not to delve into deep mathematical and computational issues – although some fundamental knowledge is presented – but to describe which type of simulations have been carried out and why they are useful in the field of RS research. This article helps to bridge the gap between the vast group of experimentalists working in the field of RS and computational scientists developing DFT and/or MD simulations.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100825"},"PeriodicalIF":31.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X2400055X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive switching (RS) devices, often referred to as memristors, have exhibited interesting electronic performance that could be useful to enhance the capabilities of multiple types of integrated circuits that we use in our daily lives. However, RS devices still do not fulfil the reliability requirements of most commercial applications, mainly because the switching and failure mechanisms are still not fully understood. Density functional theory (DFT) and/or molecular dynamics (MD) are simulations used to describe complex interactions between groups of atoms, and they can be employed to clarify which physical, chemical, thermal and/or electronic phenomena take place during the normal operation of RS devices, which should help to enhance their performance and reliability. In this article, we review which studies have employed DFT and/or MD in the field of RS research, focusing on which methods have been employed and which material properties have been calculated. The goal of this article is not to delve into deep mathematical and computational issues – although some fundamental knowledge is presented – but to describe which type of simulations have been carried out and why they are useful in the field of RS research. This article helps to bridge the gap between the vast group of experimentalists working in the field of RS and computational scientists developing DFT and/or MD simulations.

用于电阻开关研究的密度泛函理论和分子动力学模拟
电阻开关(RS)器件,通常被称为忆阻器,具有有趣的电子性能,可用于增强我们日常生活中使用的多种类型集成电路的功能。然而,RS 器件仍然无法满足大多数商业应用对可靠性的要求,这主要是因为人们对其开关和失效机制还没有完全了解。密度泛函理论(DFT)和/或分子动力学(MD)是用于描述原子团之间复杂相互作用的模拟方法,可用于阐明 RS 器件正常工作时发生的物理、化学、热和/或电子现象,从而有助于提高其性能和可靠性。在本文中,我们回顾了在 RS 研究领域采用 DFT 和/或 MD 的研究,重点是采用了哪些方法以及计算了哪些材料特性。本文的目的不是深入探讨深奥的数学和计算问题--虽然也介绍了一些基础知识--而是介绍已经进行了哪些类型的模拟,以及为什么这些模拟在 RS 研究领域非常有用。这篇文章有助于缩小在 RS 领域工作的广大实验人员与进行 DFT 和/或 MD 模拟的计算科学家之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信