Baseline and stress-induced changes in plasma bacterial killing ability against gram-negative bacteria are partially mediated by the complement system in Rhinella diptycha toads

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Stefany Antunes de Oliveira Rosa, Braz Titon Junior, Aymam Cobo de Figueiredo, Alan Siqueira Lima, Fernando Ribeiro Gomes, Stefanny Christie Monteiro Titon
{"title":"Baseline and stress-induced changes in plasma bacterial killing ability against gram-negative bacteria are partially mediated by the complement system in Rhinella diptycha toads","authors":"Stefany Antunes de Oliveira Rosa,&nbsp;Braz Titon Junior,&nbsp;Aymam Cobo de Figueiredo,&nbsp;Alan Siqueira Lima,&nbsp;Fernando Ribeiro Gomes,&nbsp;Stefanny Christie Monteiro Titon","doi":"10.1016/j.cbpa.2024.111701","DOIUrl":null,"url":null,"abstract":"<div><p>The plasma bacterial killing ability (BKA) is modulated by the stress response in vertebrates, including amphibians. The complement system is an effector mechanism comprised of a set of proteins present in the plasma that once activated can promote bacterial lysis. Herein, we investigated whether changes in plasma BKA as a result of the acute stress response and an immune challenge are mediated by the complement system in <em>Rhinella diptycha</em> toads. Additionally, we investigated whether the observed changes in plasma BKA are associated with changes in plasma corticosterone levels (CORT). We subjected adult male toads to a restraint or an immune challenge (with three concentrations of <em>Aeromonas hydrophila</em> heat inactivated), and then evaluated the plasma BKA against <em>A. hydrophila, in vitro</em>. We determined the complement system activity on plasma BKA, by treating the plasma (baseline, 1 h and 24 h post-restraint, and after the immune challenge) with ethylenediaminetetraacetic acid, heat, or protease. Our results showed increased CORT 1 h and 24 h after restraint and decreased plasma BKA 24 h post-restraint. The inhibitors of the complement system decreased the plasma BKA compared with untreated plasma at all times (baseline, 1 h, and 24 h after restraint), demonstrating that the plasma BKA activity is partially mediated by the complement system. The immune challenge increased CORT, with the highest values being observed in the highest bacterial concentration, compared with control. The plasma BKA was not affected by the immune challenge but was demonstrated to be partially mediated by the complement system. Our results demonstrated that restraint and the immune challenge activated the hypothalamus-pituitary-interrenal axis, by increasing plasma CORT levels in <em>R. diptycha</em>. Also, our results demonstrated the complement system is participative in the plasma BKA for baseline and post-stress situations in these toads.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The plasma bacterial killing ability (BKA) is modulated by the stress response in vertebrates, including amphibians. The complement system is an effector mechanism comprised of a set of proteins present in the plasma that once activated can promote bacterial lysis. Herein, we investigated whether changes in plasma BKA as a result of the acute stress response and an immune challenge are mediated by the complement system in Rhinella diptycha toads. Additionally, we investigated whether the observed changes in plasma BKA are associated with changes in plasma corticosterone levels (CORT). We subjected adult male toads to a restraint or an immune challenge (with three concentrations of Aeromonas hydrophila heat inactivated), and then evaluated the plasma BKA against A. hydrophila, in vitro. We determined the complement system activity on plasma BKA, by treating the plasma (baseline, 1 h and 24 h post-restraint, and after the immune challenge) with ethylenediaminetetraacetic acid, heat, or protease. Our results showed increased CORT 1 h and 24 h after restraint and decreased plasma BKA 24 h post-restraint. The inhibitors of the complement system decreased the plasma BKA compared with untreated plasma at all times (baseline, 1 h, and 24 h after restraint), demonstrating that the plasma BKA activity is partially mediated by the complement system. The immune challenge increased CORT, with the highest values being observed in the highest bacterial concentration, compared with control. The plasma BKA was not affected by the immune challenge but was demonstrated to be partially mediated by the complement system. Our results demonstrated that restraint and the immune challenge activated the hypothalamus-pituitary-interrenal axis, by increasing plasma CORT levels in R. diptycha. Also, our results demonstrated the complement system is participative in the plasma BKA for baseline and post-stress situations in these toads.

Abstract Image

对革兰氏阴性细菌的血浆杀菌能力的基线变化和应激诱导变化部分由双尾蟾蜍的补体系统介导。
包括两栖动物在内的脊椎动物的血浆细菌杀伤能力(BKA)受应激反应的调节。补体系统是一种效应机制,由存在于血浆中的一系列蛋白质组成,一旦被激活就能促进细菌溶解。在这里,我们研究了急性应激反应和免疫挑战导致的血浆 BKA 变化是否是由补体系统介导的。此外,我们还研究了观察到的血浆BKA变化是否与血浆皮质酮(CORT)水平的变化有关。我们让成年雄性蟾蜍接受抑制或免疫挑战(三种浓度的嗜水气单胞菌热灭活),然后在体外评估血浆 BKA 对嗜水气单胞菌的作用。我们用乙二胺四乙酸、热或蛋白酶处理血浆(基线、约束后 1 小时和 24 小时以及免疫挑战后),以确定补体系统对血浆 BKA 的活性。我们的结果显示,抑制后 1 小时和 24 小时,CORT 增加,抑制后 24 小时,血浆 BKA 降低。与未经处理的血浆相比,补体系统抑制剂可在所有时间(基线、束缚后 1 小时和 24 小时)降低血浆 BKA,这表明血浆 BKA 活性部分由补体系统介导。与对照组相比,免疫挑战增加了 CORT,在细菌浓度最高时观察到的 CORT 值最高。血浆 BKA 不受免疫挑战的影响,但被证明部分由补体系统介导。我们的研究结果表明,抑制和免疫挑战通过增加双尾鲑的血浆 CORT 水平,激活了下丘脑-垂体-肾上腺轴。此外,我们的研究结果还表明,补体系统参与了这些蟾蜍在基线和应激后血浆 BKA 的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信