{"title":"Prevalence, Isolation, and Molecular Characterization of Severe Fever with Thrombocytopenia Syndrome Virus in Cattle from the Republic of Korea.","authors":"Jeong-Byoung Chae, Ji-Min Rim, Sun-Woo Han, Yoon-Kyoung Cho, Jun-Gu Kang, Joon-Seok Chae","doi":"10.1089/vbz.2024.0008","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by <i>Bandavirus dabieense</i>. Initially identified in China, this disease has spread throughout Asian countries via tick bites and animal-to-human transmission. However, reports of the prevalence of SFTS virus (SFTSV) in cattle in Korea are lacking. This study aimed to investigate SFTSV infections in grazing cattle in the Republic of Korea (ROK). <b><i>Materials and Methods:</i></b> In total, 845 grazing cattle serum samples were collected over 2 years (2019 and 2020) in the ROK, and viral RNA was extracted using a kit. One-step RT-nested PCR was performed to amplify the S-segment of SFTSV. Positive serum samples were used to isolate SFTSV in Vero E6 cells, and the full sequences were analyzed. A phylogenetic tree was constructed using the maximum-likelihood method with MEGA X. In addition, immunoglobulin G antibodies against SFTSV were investigated using an enzyme-linked immunosorbent assay. <b><i>Results:</i></b> Here, 4.0% of serum samples (34/845) were positive for SFTSV S-segments, and one virus isolate was cultured in Vero E6 cells. Phylogenetic analysis based on the partial S-segment classified 4 SFTSV isolates as the B-2 genotype, 9 as the B-3 genotype, 18 as an unclassified B genotype, and 3 as the D genotype. One cultured virus was classified as the B-2 genotype based on SFTSV L-, M-, and S-segments. Antibody detection results showed that 21.1% of serum samples (161/763) were positive for SFTSV. <b><i>Conclusion:</i></b> To the best of our knowledge, this is the first study performed to identify the prevalence of SFTSV in grazing cattle in the ROK. Our findings indicate the necessity for more intensive and continuous SFTSV monitoring, not only in cattle but also in other animals, to comprehend the genetic diversity of the virus and its potential eco-epidemiological impact on human health.</p>","PeriodicalId":23683,"journal":{"name":"Vector borne and zoonotic diseases","volume":" ","pages":"826-834"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vector borne and zoonotic diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vbz.2024.0008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by Bandavirus dabieense. Initially identified in China, this disease has spread throughout Asian countries via tick bites and animal-to-human transmission. However, reports of the prevalence of SFTS virus (SFTSV) in cattle in Korea are lacking. This study aimed to investigate SFTSV infections in grazing cattle in the Republic of Korea (ROK). Materials and Methods: In total, 845 grazing cattle serum samples were collected over 2 years (2019 and 2020) in the ROK, and viral RNA was extracted using a kit. One-step RT-nested PCR was performed to amplify the S-segment of SFTSV. Positive serum samples were used to isolate SFTSV in Vero E6 cells, and the full sequences were analyzed. A phylogenetic tree was constructed using the maximum-likelihood method with MEGA X. In addition, immunoglobulin G antibodies against SFTSV were investigated using an enzyme-linked immunosorbent assay. Results: Here, 4.0% of serum samples (34/845) were positive for SFTSV S-segments, and one virus isolate was cultured in Vero E6 cells. Phylogenetic analysis based on the partial S-segment classified 4 SFTSV isolates as the B-2 genotype, 9 as the B-3 genotype, 18 as an unclassified B genotype, and 3 as the D genotype. One cultured virus was classified as the B-2 genotype based on SFTSV L-, M-, and S-segments. Antibody detection results showed that 21.1% of serum samples (161/763) were positive for SFTSV. Conclusion: To the best of our knowledge, this is the first study performed to identify the prevalence of SFTSV in grazing cattle in the ROK. Our findings indicate the necessity for more intensive and continuous SFTSV monitoring, not only in cattle but also in other animals, to comprehend the genetic diversity of the virus and its potential eco-epidemiological impact on human health.
期刊介绍:
Vector-Borne and Zoonotic Diseases is an authoritative, peer-reviewed journal providing basic and applied research on diseases transmitted to humans by invertebrate vectors or non-human vertebrates. The Journal examines geographic, seasonal, and other risk factors that influence the transmission, diagnosis, management, and prevention of this group of infectious diseases, and identifies global trends that have the potential to result in major epidemics.
Vector-Borne and Zoonotic Diseases coverage includes:
-Ecology
-Entomology
-Epidemiology
-Infectious diseases
-Microbiology
-Parasitology
-Pathology
-Public health
-Tropical medicine
-Wildlife biology
-Bacterial, rickettsial, viral, and parasitic zoonoses