{"title":"Study of the preparation, characterization, and solubility of lidocaine complexed with 5-sulfosalicylic acid dihydrate.","authors":"Manami Nomura, Junki Tomita, Shoko Itakura, Hiroaki Todo, Nao Kodama, Yutaka Inoue","doi":"10.1080/03639045.2024.2382396","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study was to prepare solid dispersions of lidocaine (Lid) with 5-sulfosalicylic acid dihydrate (SSA) by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1) and to evaluate their physical properties.</p><p><strong>Methods: </strong>Here, we evaluated the physicochemical properties and solubility of solid dispersions of Lid and SSA prepared by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1).</p><p><strong>Results: </strong>Differential scanning calorimetry measurements showed that after freeze-drying, the endothermic peak due to Lid melting, the dehydration peak, and the endothermic peak due to SSA melting disappeared. Powder X-ray diffraction results showed that the characteristic Lid and SSA peaks disappeared after freeze-drying, indicating a halo pattern. The near-infrared spectroscopy results suggested that Lid-derived -NH and -CH groups and the Lid-derived -OH and -CH groups from the SSA peak shifted and broadened after freeze-drying, suggesting their involvement in complex formation through Lid/SSA intermolecular interactions. Nuclear Overhauser effect spectroscopy-nuclear magnetic resonance (NMR) measurements showed a cross-peak due to the interaction between the Lid-derived -CH group and the SSA-derived -OH group, suggesting hydrogen bonding. Diffusion-ordered spectroscopy NMR measurements showed that the diffusion coefficients of Lid and SSA aggregated in FD Lid/SSA, suggesting a change in Lid dispersibility in the solvent owing to the formation of a complex with SSA. The solubility of FD Lid/SSA was approximately 88 mg/mL (∼20-fold higher than that of Lid).</p><p><strong>Conclusions: </strong>These findings suggest that complex formation occurred in FD Lid/SSA; this enhanced the solubility of this dispersion.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2382396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study was to prepare solid dispersions of lidocaine (Lid) with 5-sulfosalicylic acid dihydrate (SSA) by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1) and to evaluate their physical properties.
Methods: Here, we evaluated the physicochemical properties and solubility of solid dispersions of Lid and SSA prepared by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1).
Results: Differential scanning calorimetry measurements showed that after freeze-drying, the endothermic peak due to Lid melting, the dehydration peak, and the endothermic peak due to SSA melting disappeared. Powder X-ray diffraction results showed that the characteristic Lid and SSA peaks disappeared after freeze-drying, indicating a halo pattern. The near-infrared spectroscopy results suggested that Lid-derived -NH and -CH groups and the Lid-derived -OH and -CH groups from the SSA peak shifted and broadened after freeze-drying, suggesting their involvement in complex formation through Lid/SSA intermolecular interactions. Nuclear Overhauser effect spectroscopy-nuclear magnetic resonance (NMR) measurements showed a cross-peak due to the interaction between the Lid-derived -CH group and the SSA-derived -OH group, suggesting hydrogen bonding. Diffusion-ordered spectroscopy NMR measurements showed that the diffusion coefficients of Lid and SSA aggregated in FD Lid/SSA, suggesting a change in Lid dispersibility in the solvent owing to the formation of a complex with SSA. The solubility of FD Lid/SSA was approximately 88 mg/mL (∼20-fold higher than that of Lid).
Conclusions: These findings suggest that complex formation occurred in FD Lid/SSA; this enhanced the solubility of this dispersion.