A novel membrane-on-chip guides morphogenesis for the reconstruction of the intestinal crypt-villus axis.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Sara Sibilio, Raffaele Mennella, Vincenza De Gregorio, Alessia La Rocca, Francesco Urciuolo, Giorgia Imparato, Paolo A Netti
{"title":"A novel membrane-on-chip guides morphogenesis for the reconstruction of the intestinal crypt-villus axis.","authors":"Sara Sibilio, Raffaele Mennella, Vincenza De Gregorio, Alessia La Rocca, Francesco Urciuolo, Giorgia Imparato, Paolo A Netti","doi":"10.1088/1758-5090/ad6599","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstructing the microscale villous organisation and functionality of the small intestine is essential for developing<i>in vitro</i>platforms tailored for absorption studies as well as for investigating intestinal morphogenesis in development and disease. However, the current fabrication techniques able to mimic the villus-crypt axis poses significant challenges in terms of reconstruction of the complex 3D microarchitecture. These challenges extend beyond mere structural intricacies to encompass the incorporation of diverse cell types and the management of intricate fluid dynamics within the system. Here, we introduce a novel microfluidic device called<i>In-Crypts</i>, which integrates a cell-instructive membrane aimed at inducing and guiding Caco-2 cells morphogenesis. Patterned topographical cues embossed onto the porous membrane induce the formation of a well-organized intestinal epithelium, characterized by proliferating crypt-like domains and differentiated villus-like regions. Notably, our cell-instructive porous membrane effectively sustains stem cells development, faithfully replicating the niche environment of<i>in vivo</i>intestinal crypts thus mirroring the cell biogeography observed<i>in vivo</i>. Moreover, by introducing dynamic fluid flow, we provide a faithful recapitulation of the native microenvironmental shear stress experienced by the intestinal epithelium. This stress plays a crucial role in influencing cell behaviour, differentiation, and overall functionality, thus offering a highly realistic model for studying intestinal physiology and pathology. The resulting intestinal epithelium exhibits significantly denser regions of mucus and microvilli, characteristic typically absent in static cultures, upregulating more than 1.5 of the amount expressed in the classical flattened configuration, enhanced epithelial cell differentiation and increased adsorptive surface area. Hence, the innovative design of<i>In-Crypts</i>proves the critical role of employing a cell-instructive membrane in argument the physiological relevance of organs-on-chips. This aspect, among others, will contribute to a more comprehensive understanding of organism function, directly impacting drug discovery and development.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad6599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructing the microscale villous organisation and functionality of the small intestine is essential for developingin vitroplatforms tailored for absorption studies as well as for investigating intestinal morphogenesis in development and disease. However, the current fabrication techniques able to mimic the villus-crypt axis poses significant challenges in terms of reconstruction of the complex 3D microarchitecture. These challenges extend beyond mere structural intricacies to encompass the incorporation of diverse cell types and the management of intricate fluid dynamics within the system. Here, we introduce a novel microfluidic device calledIn-Crypts, which integrates a cell-instructive membrane aimed at inducing and guiding Caco-2 cells morphogenesis. Patterned topographical cues embossed onto the porous membrane induce the formation of a well-organized intestinal epithelium, characterized by proliferating crypt-like domains and differentiated villus-like regions. Notably, our cell-instructive porous membrane effectively sustains stem cells development, faithfully replicating the niche environment ofin vivointestinal crypts thus mirroring the cell biogeography observedin vivo. Moreover, by introducing dynamic fluid flow, we provide a faithful recapitulation of the native microenvironmental shear stress experienced by the intestinal epithelium. This stress plays a crucial role in influencing cell behaviour, differentiation, and overall functionality, thus offering a highly realistic model for studying intestinal physiology and pathology. The resulting intestinal epithelium exhibits significantly denser regions of mucus and microvilli, characteristic typically absent in static cultures, upregulating more than 1.5 of the amount expressed in the classical flattened configuration, enhanced epithelial cell differentiation and increased adsorptive surface area. Hence, the innovative design ofIn-Cryptsproves the critical role of employing a cell-instructive membrane in argument the physiological relevance of organs-on-chips. This aspect, among others, will contribute to a more comprehensive understanding of organism function, directly impacting drug discovery and development.

新型片上膜引导形态发生,重建肠隐窝-绒毛轴。
重建小肠的微尺度绒毛组织和功能对于开发用于吸收研究的体外平台以及研究发育和疾病中的肠道形态发生至关重要。然而,目前能够模拟绒毛-嵴轴的制造技术在重建复杂的三维微结构方面面临巨大挑战。这些挑战不仅仅是结构上的错综复杂,还包括多种细胞类型的整合以及系统内错综复杂的流体动力学管理。在这里,我们介绍了一种名为 "In-Crypts "的新型微流控装置,它集成了细胞诱导膜,旨在诱导和引导 Caco-2 细胞的形态发生。压印在多孔膜上的图案化地形线索可诱导形成组织良好的肠上皮,其特征是增殖的隐窝样区域和分化的绒毛样区域。值得注意的是,我们的细胞诱导多孔膜有效地维持了干细胞的发育,忠实地复制了体内肠隐窝的生态位环境,从而反映了在体内观察到的细胞生物地理学。此外,通过引入动态流体流动,我们忠实再现了肠上皮所经历的原生微环境剪切应力。这种应力在影响细胞行为、分化和整体功能方面起着至关重要的作用,从而为研究肠道生理和病理提供了一个高度逼真的模型。由此产生的肠上皮显示出明显密集的粘液和微绒毛区域,这是静态培养物通常不具备的特征,上调量是经典扁平构型表达量的 1.5 倍以上,上皮细胞分化增强,吸附表面积增大。因此,In-Crypts 的创新设计证明了在论证芯片上器官的生理相关性时采用细胞诱导膜的关键作用。除其他外,这将有助于更全面地了解生物体的功能,直接影响药物的发现和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信