Deflecting lithium dendritic cracks in multi-layered solid electrolytes

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-09-18 DOI:10.1016/j.joule.2024.06.024
Bingkun Hu , Shengming Zhang , Ziyang Ning , Dominic Spencer-Jolly , Dominic L.R. Melvin , Xiangwen Gao , Johann Perera , Shengda D. Pu , Gregory J. Rees , Longlong Wang , Lechen Yang , Hui Gao , Shashidhara Marathe , Genoveva Burca , T. James Marrow , Peter G. Bruce
{"title":"Deflecting lithium dendritic cracks in multi-layered solid electrolytes","authors":"Bingkun Hu ,&nbsp;Shengming Zhang ,&nbsp;Ziyang Ning ,&nbsp;Dominic Spencer-Jolly ,&nbsp;Dominic L.R. Melvin ,&nbsp;Xiangwen Gao ,&nbsp;Johann Perera ,&nbsp;Shengda D. Pu ,&nbsp;Gregory J. Rees ,&nbsp;Longlong Wang ,&nbsp;Lechen Yang ,&nbsp;Hui Gao ,&nbsp;Shashidhara Marathe ,&nbsp;Genoveva Burca ,&nbsp;T. James Marrow ,&nbsp;Peter G. Bruce","doi":"10.1016/j.joule.2024.06.024","DOIUrl":null,"url":null,"abstract":"<div><p>Charging current densities of solid-state batteries with lithium metal anodes and ceramic electrolytes are severely limited due to lithium dendrites that penetrate the electrolyte leading to a short circuit. We show that dendrite growth can be inhibited by different crack deflection mechanisms when multi-layered solid electrolytes, such as Li<sub>6</sub>PS<sub>5</sub>Cl/Li<sub>3</sub>ScCl<sub>6</sub>/Li<sub>6</sub>PS<sub>5</sub>Cl and Li<sub>6</sub>PS<sub>5</sub>Cl/Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>/Li<sub>6</sub>PS<sub>5</sub>Cl, are employed but not when the inner layer is Li<sub>3</sub>PS<sub>4</sub>. X-ray tomographic imaging shows crack deflection along mechanically weak interfaces between solid electrolytes as a result of local mismatches in elastic moduli. Cracks are also deflected laterally within Li<sub>3</sub>ScCl<sub>6</sub>, which contains preferentially oriented particles. Deflection occurs without lithium being present. In cases where the inner layers react with lithium, the resulting decomposition products can fill and block crack propagation. All three mechanisms are effective at low stack pressures. Operating at 2.5 MPa, multi-layered solid electrolytes Li<sub>6</sub>PS<sub>5</sub>Cl/Li<sub>3</sub>ScCl<sub>6</sub>/Li<sub>6</sub>PS<sub>5</sub>Cl and Li<sub>6</sub>PS<sub>5</sub>Cl/Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>/Li<sub>6</sub>PS<sub>5</sub>Cl can achieve lithium plating at current densities exceeding 15 mA cm<sup>−</sup><sup><sup>2</sup></sup>.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2623-2638"},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542435124003003/pdfft?md5=bf023301c97320930f10fc18aaa0898a&pid=1-s2.0-S2542435124003003-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003003","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Charging current densities of solid-state batteries with lithium metal anodes and ceramic electrolytes are severely limited due to lithium dendrites that penetrate the electrolyte leading to a short circuit. We show that dendrite growth can be inhibited by different crack deflection mechanisms when multi-layered solid electrolytes, such as Li6PS5Cl/Li3ScCl6/Li6PS5Cl and Li6PS5Cl/Li10GeP2S12/Li6PS5Cl, are employed but not when the inner layer is Li3PS4. X-ray tomographic imaging shows crack deflection along mechanically weak interfaces between solid electrolytes as a result of local mismatches in elastic moduli. Cracks are also deflected laterally within Li3ScCl6, which contains preferentially oriented particles. Deflection occurs without lithium being present. In cases where the inner layers react with lithium, the resulting decomposition products can fill and block crack propagation. All three mechanisms are effective at low stack pressures. Operating at 2.5 MPa, multi-layered solid electrolytes Li6PS5Cl/Li3ScCl6/Li6PS5Cl and Li6PS5Cl/Li10GeP2S12/Li6PS5Cl can achieve lithium plating at current densities exceeding 15 mA cm2.

Abstract Image

Abstract Image

多层固体电解质中的锂树枝状裂纹偏转
采用锂金属阳极和陶瓷电解质的固态电池的充电电流密度受到严重限制,原因是锂枝晶穿透电解质导致短路。我们的研究表明,当采用 Li6PS5Cl/Li3ScCl6/Li6PS5Cl 和 Li6PS5Cl/Li10GeP2S12/Li6PS5Cl 等多层固体电解质时,树枝状突起的生长可以通过不同的裂纹偏转机制得到抑制,但当内层为 Li3PS4 时则无法抑制。X 射线层析成像显示,由于弹性模量的局部不匹配,固体电解质之间的机械薄弱界面会出现裂纹偏转。裂缝在含有优先取向颗粒的 Li3ScCl6 中也会发生横向偏转。在不含锂的情况下也会发生偏转。在内层与锂发生反应的情况下,产生的分解产物会填充并阻止裂纹的扩展。这三种机制在低堆叠压力下均有效。多层固体电解质 Li6PS5Cl/Li3ScCl6/Li6PS5Cl 和 Li6PS5Cl/Li10GeP2S12/Li6PS5Cl 可在 2.5 兆帕的压力下工作,在电流密度超过 15 毫安厘米-2 时实现镀锂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信