{"title":"The role of modal substitution in rebound effects within US freight transportation","authors":"James B. Bushnell, Jonathan E. Hughes","doi":"10.1038/s41560-024-01568-w","DOIUrl":null,"url":null,"abstract":"Energy efficiency improvements can create rebound effects that increase energy use. We have studied rebound in US freight transportation and found that substitution across transportation modes can be an important rebound mechanism. The sign of the rebound effect depends on whether the improved efficiency induces substitution with more or less fuel-efficient modes. We used detailed US microdata to model shippers’ freight mode choices and simulate how these choices change under energy efficiency standards. Under a policy approximating US heavy-duty truck fuel economy standards, we found that rebound can be positive or negative in individual market segments. However, the overall effect substantially reduces the gains from improved truck fuel efficiency. Energy savings are reduced by around 20% because shipments switch from rail service to the improved, but still less fuel-efficient, truck service. Similar substitution rebound effects could occur in other settings where producers choose between technologies with different energy efficiencies. Energy efficiency improvements can create rebound effects that increase energy use. Here the authors find that energy savings in US freight transport may depend on whether increased efficiency encourages substitution with more or less fuel-efficient modes.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 9","pages":"1153-1160"},"PeriodicalIF":49.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01568-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy efficiency improvements can create rebound effects that increase energy use. We have studied rebound in US freight transportation and found that substitution across transportation modes can be an important rebound mechanism. The sign of the rebound effect depends on whether the improved efficiency induces substitution with more or less fuel-efficient modes. We used detailed US microdata to model shippers’ freight mode choices and simulate how these choices change under energy efficiency standards. Under a policy approximating US heavy-duty truck fuel economy standards, we found that rebound can be positive or negative in individual market segments. However, the overall effect substantially reduces the gains from improved truck fuel efficiency. Energy savings are reduced by around 20% because shipments switch from rail service to the improved, but still less fuel-efficient, truck service. Similar substitution rebound effects could occur in other settings where producers choose between technologies with different energy efficiencies. Energy efficiency improvements can create rebound effects that increase energy use. Here the authors find that energy savings in US freight transport may depend on whether increased efficiency encourages substitution with more or less fuel-efficient modes.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.