On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Kui Du, Jia-Jun Fan, Xiao-Hui Sun, Fang Wang, Ya-Lan Zhang
{"title":"On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems","authors":"Kui Du,&nbsp;Jia-Jun Fan,&nbsp;Xiao-Hui Sun,&nbsp;Fang Wang,&nbsp;Ya-Lan Zhang","doi":"10.1007/s10444-024-10178-9","DOIUrl":null,"url":null,"abstract":"<div><p>Krylov subspace methods for solving linear systems of equations involving skew-symmetric matrices have gained recent attention. Numerical equivalences among Krylov subspace methods for nonsingular skew-symmetric linear systems have been given in Greif et al. [SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1071–1087]. In this work, we extend the results of Greif et al. to singular skew-symmetric linear systems. In addition, we systematically study three Krylov subspace methods (called S<span>\\(^3\\)</span>CG, S<span>\\(^3\\)</span>MR, and S<span>\\(^3\\)</span>LQ) for solving shifted skew-symmetric linear systems. They all are based on Lanczos triangularization for skew-symmetric matrices and correspond to CG, MINRES, and SYMMLQ for solving symmetric linear systems, respectively. To the best of our knowledge, this is the first work that studies S<span>\\(^3\\)</span>LQ. We give some new theoretical results on S<span>\\(^3\\)</span>CG, S<span>\\(^3\\)</span>MR, and S<span>\\(^3\\)</span>LQ. We also provide relations among the three methods and those based on Golub–Kahan bidiagonalization and Saunders–Simon–Yip tridiagonalization. Numerical examples are given to illustrate our theoretical findings.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10178-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Krylov subspace methods for solving linear systems of equations involving skew-symmetric matrices have gained recent attention. Numerical equivalences among Krylov subspace methods for nonsingular skew-symmetric linear systems have been given in Greif et al. [SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1071–1087]. In this work, we extend the results of Greif et al. to singular skew-symmetric linear systems. In addition, we systematically study three Krylov subspace methods (called S\(^3\)CG, S\(^3\)MR, and S\(^3\)LQ) for solving shifted skew-symmetric linear systems. They all are based on Lanczos triangularization for skew-symmetric matrices and correspond to CG, MINRES, and SYMMLQ for solving symmetric linear systems, respectively. To the best of our knowledge, this is the first work that studies S\(^3\)LQ. We give some new theoretical results on S\(^3\)CG, S\(^3\)MR, and S\(^3\)LQ. We also provide relations among the three methods and those based on Golub–Kahan bidiagonalization and Saunders–Simon–Yip tridiagonalization. Numerical examples are given to illustrate our theoretical findings.

关于偏斜对称和移位偏斜对称线性系统的克雷洛夫子空间方法
用于求解涉及偏斜对称矩阵的线性方程组的 Krylov 子空间方法近年来备受关注。Greif 等人[SIAM J. Matrix Anal. Appl., 37 (2016), pp.]在这项工作中,我们将 Greif 等人的结果扩展到奇异偏斜对称线性系统。此外,我们还系统地研究了三种克雷洛夫子空间方法(称为 S\(^3\)CG, S\(^3\)MR 和 S\(^3\)LQ ),用于求解移位偏斜对称线性系统。它们都是基于偏斜对称矩阵的 Lanczos 三角化,分别对应于求解对称线性系统的 CG、MINRES 和 SYMMLQ。据我们所知,这是第一部研究 S\(^3\)LQ 的著作。我们给出了关于 S\(^3\)CG, S\(^3\)MR 和 S\(^3\)LQ 的一些新的理论结果。我们还提供了这三种方法与基于 Golub-Kahan 二对角化和 Saunders-Simon-Yip 三对角化的方法之间的关系。我们还给出了数值实例来说明我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信