{"title":"Investigating the Expression Levels of Bax and Bcl-2 Genes in Peripheral Blood Lymphocytes of Industrial Radiation Workers in the Asaluyeh Region.","authors":"Omid Keshavarzi, Gholamhassan Haddadi, Reza Fardid, Masoud Haghani, Tahereh Kalantari, Azadeh Namdari","doi":"10.31661/jbpe.v0i0.2305-1620","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Industrial radiography uses gamma or X-ray radionuclide sources to investigate the safety of industrial materials. Industrial radiation workers receive the highest occupational radiation doses.</p><p><strong>Objective: </strong>The present study investigates the relationship between Bax and Bcl-2 gene expression variables in industrial radiation workers.</p><p><strong>Material and methods: </strong>In this case-control study, data was collected using blood sampling from 40 workers, including two groups of non-radiation and radiation workers employed at the location. Expression levels of Bax and Bcl-2 genes were assessed in the laboratory. The environmental and absorbed doses of workers were measured using environmental and pen dosimeters.</p><p><strong>Results: </strong>Statistical analysis showed that the radiation group's Bcl-2 gene expression level was significantly higher. Findings also demonstrated a correlation between Bcl-2 gene expression and the number of workdays. Also, the Bax gene expression did not show a significant change, and the expression ratio of Bax/Bcl-2 was insignificant in the two groups.</p><p><strong>Conclusion: </strong>Exposure to low doses of radiation could promote an adaptive response in cells by increasing Bcl-2 gene expression.</p>","PeriodicalId":38035,"journal":{"name":"Journal of Biomedical Physics and Engineering","volume":"14 3","pages":"275-286"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31661/jbpe.v0i0.2305-1620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Industrial radiography uses gamma or X-ray radionuclide sources to investigate the safety of industrial materials. Industrial radiation workers receive the highest occupational radiation doses.
Objective: The present study investigates the relationship between Bax and Bcl-2 gene expression variables in industrial radiation workers.
Material and methods: In this case-control study, data was collected using blood sampling from 40 workers, including two groups of non-radiation and radiation workers employed at the location. Expression levels of Bax and Bcl-2 genes were assessed in the laboratory. The environmental and absorbed doses of workers were measured using environmental and pen dosimeters.
Results: Statistical analysis showed that the radiation group's Bcl-2 gene expression level was significantly higher. Findings also demonstrated a correlation between Bcl-2 gene expression and the number of workdays. Also, the Bax gene expression did not show a significant change, and the expression ratio of Bax/Bcl-2 was insignificant in the two groups.
Conclusion: Exposure to low doses of radiation could promote an adaptive response in cells by increasing Bcl-2 gene expression.
期刊介绍:
The Journal of Biomedical Physics and Engineering (JBPE) is a bimonthly peer-reviewed English-language journal that publishes high-quality basic sciences and clinical research (experimental or theoretical) broadly concerned with the relationship of physics to medicine and engineering.