Alyssa A. La Bella , Alex Molesan , Daniel A. Wollin , Souvik Paul , Ana L. Flores-Mireles
{"title":"Initial Antimicrobial Testing of a Novel Reusable Intermittent Urinary Catheter System and Catheter Reprocessing Device","authors":"Alyssa A. La Bella , Alex Molesan , Daniel A. Wollin , Souvik Paul , Ana L. Flores-Mireles","doi":"10.1016/j.urology.2024.07.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To evaluate the efficacy of the Aurie System, a preclinical prototype allowing for standardized intermittent catheter (IC) reuse of novel reusable no-touch ICs. Individuals with neurogenic bladder often require single-use ICs to urinate, but urinary tract infection (UTI) is a common cause of morbidity for IC users. Safer no-touch catheters are not easily affordable, and the Aurie System attempts to provide no-touch catheters at a fraction of the price by allowing for standardized and safe IC reuse.</div></div><div><h3>Methods</h3><div>Standard ICs were inoculated with <em>Escherichia coli</em> and <em>Pseudomonas aeruginosa</em> and incubated for 48 hours to assess microbial burden and biofilm formation (the latter using infrared fluorescence imaging). This procedure was repeated with Aurie ICs, focusing on evaluating catheter microbial burden after inoculation and reprocessing with the prototype washer-disinfector. This was repeated with up to 100 cycles to evaluate repetitive use.</div></div><div><h3>Results</h3><div>Standard ICs showed bacterial attachment and biofilm development peaking at 24 hours of incubation. The Aurie catheters produced a similar outcome but, after reprocessing, microbial burden was reduced below the level of detection. Repeat cycles showed pathogen clearance to similar levels. One catheter reached 100 cycles and there was no viable pathogen load after reprocessing.</div></div><div><h3>Conclusion</h3><div>Intermittent urinary catheters, when cleaned inappropriately, can harbor viable bacteria and biofilm. The Aurie System, when used to disinfect novel reusable ICs within a prototype reprocessing device, can reduce microbial burden below level of detection even after 100 cycles. This suggests the Aurie System may be a feasible technology for safe IC reuse.</div></div>","PeriodicalId":23415,"journal":{"name":"Urology","volume":"193 ","pages":"Pages 8-15"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0090429524005673","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To evaluate the efficacy of the Aurie System, a preclinical prototype allowing for standardized intermittent catheter (IC) reuse of novel reusable no-touch ICs. Individuals with neurogenic bladder often require single-use ICs to urinate, but urinary tract infection (UTI) is a common cause of morbidity for IC users. Safer no-touch catheters are not easily affordable, and the Aurie System attempts to provide no-touch catheters at a fraction of the price by allowing for standardized and safe IC reuse.
Methods
Standard ICs were inoculated with Escherichia coli and Pseudomonas aeruginosa and incubated for 48 hours to assess microbial burden and biofilm formation (the latter using infrared fluorescence imaging). This procedure was repeated with Aurie ICs, focusing on evaluating catheter microbial burden after inoculation and reprocessing with the prototype washer-disinfector. This was repeated with up to 100 cycles to evaluate repetitive use.
Results
Standard ICs showed bacterial attachment and biofilm development peaking at 24 hours of incubation. The Aurie catheters produced a similar outcome but, after reprocessing, microbial burden was reduced below the level of detection. Repeat cycles showed pathogen clearance to similar levels. One catheter reached 100 cycles and there was no viable pathogen load after reprocessing.
Conclusion
Intermittent urinary catheters, when cleaned inappropriately, can harbor viable bacteria and biofilm. The Aurie System, when used to disinfect novel reusable ICs within a prototype reprocessing device, can reduce microbial burden below level of detection even after 100 cycles. This suggests the Aurie System may be a feasible technology for safe IC reuse.
期刊介绍:
Urology is a monthly, peer–reviewed journal primarily for urologists, residents, interns, nephrologists, and other specialists interested in urology
The mission of Urology®, the "Gold Journal," is to provide practical, timely, and relevant clinical and basic science information to physicians and researchers practicing the art of urology worldwide. Urology® publishes original articles relating to adult and pediatric clinical urology as well as to clinical and basic science research. Topics in Urology® include pediatrics, surgical oncology, radiology, pathology, erectile dysfunction, infertility, incontinence, transplantation, endourology, andrology, female urology, reconstructive surgery, and medical oncology, as well as relevant basic science issues. Special features include rapid communication of important timely issues, surgeon''s workshops, interesting case reports, surgical techniques, clinical and basic science review articles, guest editorials, letters to the editor, book reviews, and historical articles in urology.