Tyrosinase inhibition prevents non-coplanar polychlorinated biphenyls and polybrominated diphenyl ethers-induced hyperactivity in developing zebrafish: Interaction between pigmentation and neurobehavior

IF 2.6 3区 医学 Q3 NEUROSCIENCES
Yasuaki Tanaka , Asako Shindo , Wenjing Dong , Tatsuro Nakamura , Kyoko Ogura , Kei Nomiyama , Hiroki Teraoka
{"title":"Tyrosinase inhibition prevents non-coplanar polychlorinated biphenyls and polybrominated diphenyl ethers-induced hyperactivity in developing zebrafish: Interaction between pigmentation and neurobehavior","authors":"Yasuaki Tanaka ,&nbsp;Asako Shindo ,&nbsp;Wenjing Dong ,&nbsp;Tatsuro Nakamura ,&nbsp;Kyoko Ogura ,&nbsp;Kei Nomiyama ,&nbsp;Hiroki Teraoka","doi":"10.1016/j.ntt.2024.107373","DOIUrl":null,"url":null,"abstract":"<div><p>Non-coplanar polychlorinated biphenyl (PCB) mixture Aroclor 1254 and polybrominated diphenyl ether (PBDE) BDE-47 are known to impede neurogenesis and neuronal development. We previously reported that exposure to PCB and PBDE leads to increased embryonic movement in zebrafish by decreasing dopamine levels. In this study, we studied the connection between the melanin and dopamine synthesis pathways in this context. Both genetic and chemical inhibition of tyrosinase, the rate-limiting enzyme in melanin synthesis, not only led to reduced pigmentation but also inhibit PCB/PBDE-induced embryonic hyperactivity. Furthermore, PCB and PBDE rarely affected tyrosinase expression in the potential pigment cells, suggesting that these compounds reduce dopamine through enzymatic regulation, including a competitive interaction for the substrate tyrosine. Our results provide new insights into the interactions between melanogenesis and dopaminergic neuronal activity, which may contribute to understanding the mechanisms underlying PCB/PBDE toxicity in developing organisms.</p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"104 ","pages":"Article 107373"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036224000552","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Non-coplanar polychlorinated biphenyl (PCB) mixture Aroclor 1254 and polybrominated diphenyl ether (PBDE) BDE-47 are known to impede neurogenesis and neuronal development. We previously reported that exposure to PCB and PBDE leads to increased embryonic movement in zebrafish by decreasing dopamine levels. In this study, we studied the connection between the melanin and dopamine synthesis pathways in this context. Both genetic and chemical inhibition of tyrosinase, the rate-limiting enzyme in melanin synthesis, not only led to reduced pigmentation but also inhibit PCB/PBDE-induced embryonic hyperactivity. Furthermore, PCB and PBDE rarely affected tyrosinase expression in the potential pigment cells, suggesting that these compounds reduce dopamine through enzymatic regulation, including a competitive interaction for the substrate tyrosine. Our results provide new insights into the interactions between melanogenesis and dopaminergic neuronal activity, which may contribute to understanding the mechanisms underlying PCB/PBDE toxicity in developing organisms.

抑制酪氨酸酶可防止非共面多氯联苯和多溴联苯醚诱发发育中斑马鱼的多动症:色素沉着与神经行为之间的相互作用
众所周知,非共面多氯联苯(PCB)混合物 Aroclor 1254 和多溴联苯醚(PBDE)BDE-47 会阻碍神经发生和神经元发育。我们以前曾报道过,暴露于多氯联苯和多溴联苯醚会降低多巴胺水平,从而导致斑马鱼胚胎运动增加。在这项研究中,我们研究了黑色素和多巴胺合成途径之间的联系。通过遗传和化学方法抑制黑色素合成过程中的限速酶--酪氨酸酶,不仅能减少色素沉着,还能抑制 PCB/PBDE 诱导的胚胎多动症。此外,多氯联苯和多溴联苯醚很少影响潜在色素细胞中酪氨酸酶的表达,这表明这些化合物通过酶调节减少多巴胺,包括对底物酪氨酸的竞争性相互作用。我们的研究结果为黑色素生成与多巴胺能神经元活动之间的相互作用提供了新的见解,这可能有助于理解多氯联苯/多溴联苯醚在发育中生物体内的毒性机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
10.30%
发文量
48
审稿时长
58 days
期刊介绍: Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信