{"title":"Radiotherapy-triggered reduction of platinum-based chemotherapeutic prodrugs in tumours","authors":"Qunfeng Fu, Shuren Zhang, Siyong Shen, Zhi Gu, Junyi Chen, Dongfan Song, Pengwei Sun, Chunhong Wang, Zhibin Guo, Yunlong Xiao, Yi Qin Gao, Zijian Guo, Zhibo Liu","doi":"10.1038/s41551-024-01239-x","DOIUrl":null,"url":null,"abstract":"Pt(II) drugs are a widely used chemotherapeutic, yet their side effects can be severe. Here we show that the radiation-induced reduction of Pt(IV) complexes to cytotoxic Pt(II) drugs is rapid, efficient and applicable in water, that it is mediated by hydrated electrons from water radiolysis and that the X-ray-induced release of Pt(II) drugs from an oxaliplatin prodrug in tumours inhibits their growth, as we show with nearly complete tumour regression in mice with subcutaneous human tumour xenografts. The combination of low-dose radiotherapy with a Pt(IV)-based antibody–trastuzumab conjugate led to the tumour-selective release of the chemotherapeutic in mice and to substantial therapeutic benefits. The radiation-induced local reduction of platinum prodrugs in the reductive tumour microenvironment may expand the utility of radiotherapy. Platinum-based chemotherapeutics can be locally released in tumours by leveraging the radiation-induced reduction of platinum prodrugs.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 11","pages":"1425-1435"},"PeriodicalIF":26.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-024-01239-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pt(II) drugs are a widely used chemotherapeutic, yet their side effects can be severe. Here we show that the radiation-induced reduction of Pt(IV) complexes to cytotoxic Pt(II) drugs is rapid, efficient and applicable in water, that it is mediated by hydrated electrons from water radiolysis and that the X-ray-induced release of Pt(II) drugs from an oxaliplatin prodrug in tumours inhibits their growth, as we show with nearly complete tumour regression in mice with subcutaneous human tumour xenografts. The combination of low-dose radiotherapy with a Pt(IV)-based antibody–trastuzumab conjugate led to the tumour-selective release of the chemotherapeutic in mice and to substantial therapeutic benefits. The radiation-induced local reduction of platinum prodrugs in the reductive tumour microenvironment may expand the utility of radiotherapy. Platinum-based chemotherapeutics can be locally released in tumours by leveraging the radiation-induced reduction of platinum prodrugs.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.