Suppressing Lithium Migration in a Carbon Fiber Negative Electrode During Atom Probe Tomography Analysis.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Marcus Johansen, Mahander P Singh, Baptiste Gault, Fang Liu
{"title":"Suppressing Lithium Migration in a Carbon Fiber Negative Electrode During Atom Probe Tomography Analysis.","authors":"Marcus Johansen, Mahander P Singh, Baptiste Gault, Fang Liu","doi":"10.1093/mam/ozae058","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon fibers can play dual roles, carrying mechanical load and hosting lithium (Li) simultaneously in multifunctional devices called structural batteries. It is essential to gain a detailed understanding on the interaction between Li and carbon fibers on the nanoscale. Atom probe tomography (APT) can potentially reveal individual Li and C atoms. However, lithiated carbon fibers experience massive Li migration once exposed to the electric field in the APT instrument. We show that a few nanometers of a chromium (Cr) coating on APT specimens can shield the electric field and suppress the massive Li migration. The related effects of the Cr coating, such as introduction of oxygen, enhanced mass resolving power of the mass spectrum, and increased portion of single hits, are also discussed.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon fibers can play dual roles, carrying mechanical load and hosting lithium (Li) simultaneously in multifunctional devices called structural batteries. It is essential to gain a detailed understanding on the interaction between Li and carbon fibers on the nanoscale. Atom probe tomography (APT) can potentially reveal individual Li and C atoms. However, lithiated carbon fibers experience massive Li migration once exposed to the electric field in the APT instrument. We show that a few nanometers of a chromium (Cr) coating on APT specimens can shield the electric field and suppress the massive Li migration. The related effects of the Cr coating, such as introduction of oxygen, enhanced mass resolving power of the mass spectrum, and increased portion of single hits, are also discussed.

在原子探针断层扫描分析过程中抑制碳纤维负电极中的锂迁移。
在被称为结构电池的多功能设备中,碳纤维可以同时扮演承载机械负荷和容纳锂(Li)的双重角色。详细了解锂与碳纤维在纳米尺度上的相互作用至关重要。原子探针层析技术(APT)可以揭示单个锂原子和碳原子。然而,锂化碳纤维一旦暴露在 APT 仪器的电场中,就会发生大量的锂迁移。我们的研究表明,在 APT 试样上涂覆几纳米的铬(Cr)涂层可以屏蔽电场,抑制锂的大量迁移。我们还讨论了铬涂层的相关影响,如引入氧气、增强质谱的质量分辨能力以及增加单次命中的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信