Pediatric cardiac surgery: machine learning models for postoperative complication prediction.

IF 2.8 3区 医学 Q2 ANESTHESIOLOGY
Rémi Florquin, Renaud Florquin, Denis Schmartz, Philippe Dony, Giovanni Briganti
{"title":"Pediatric cardiac surgery: machine learning models for postoperative complication prediction.","authors":"Rémi Florquin, Renaud Florquin, Denis Schmartz, Philippe Dony, Giovanni Briganti","doi":"10.1007/s00540-024-03377-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Managing children undergoing cardiac surgery with cardiopulmonary bypass (CPB) presents a significant challenge for anesthesiologists. Machine Learning (ML)-assisted tools have the potential to enhance the recognition of patients at risk of complications and predict potential issues, ultimately improving outcomes.</p><p><strong>Methods: </strong>We evaluated the prediction capacity of six models, ranging from logistic regression to support vector machine, using a dataset comprising 33 variables and 1364 subjects. The Area Under the Curve (AUC) and the F1 score served as the primary evaluation metrics. Our primary objectives were twofold: first, to develop an effective prediction model, and second, to create a user-friendly comprehensive model for identifying high-risk patients.</p><p><strong>Results: </strong>The logistic regression model demonstrated the highest effectiveness, achieving an AUC of 83.65%, and an F1 score of 0.7296, with balanced sensitivity and specificity of 77.94% and 76.47%, respectively. In comparison, the comprehensive three-layer decision tree model achieved an AUC of 72.84%, with sensitivity (79.41%) comparable to more complex models.</p><p><strong>Conclusion: </strong>Our machine learning-assisted tools provide an additional perspective and enhance the predictive capabilities of traditional scoring methods. These tools can assist anesthesiologists in making well-informed decisions. Furthermore, we have successfully demonstrated the feasibility of creating a practical white-box model. The next steps involve conducting clinical validation and multicenter cross-validation.</p><p><strong>Trial registration: </strong>NCT05537168.</p>","PeriodicalId":14997,"journal":{"name":"Journal of Anesthesia","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anesthesia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00540-024-03377-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Managing children undergoing cardiac surgery with cardiopulmonary bypass (CPB) presents a significant challenge for anesthesiologists. Machine Learning (ML)-assisted tools have the potential to enhance the recognition of patients at risk of complications and predict potential issues, ultimately improving outcomes.

Methods: We evaluated the prediction capacity of six models, ranging from logistic regression to support vector machine, using a dataset comprising 33 variables and 1364 subjects. The Area Under the Curve (AUC) and the F1 score served as the primary evaluation metrics. Our primary objectives were twofold: first, to develop an effective prediction model, and second, to create a user-friendly comprehensive model for identifying high-risk patients.

Results: The logistic regression model demonstrated the highest effectiveness, achieving an AUC of 83.65%, and an F1 score of 0.7296, with balanced sensitivity and specificity of 77.94% and 76.47%, respectively. In comparison, the comprehensive three-layer decision tree model achieved an AUC of 72.84%, with sensitivity (79.41%) comparable to more complex models.

Conclusion: Our machine learning-assisted tools provide an additional perspective and enhance the predictive capabilities of traditional scoring methods. These tools can assist anesthesiologists in making well-informed decisions. Furthermore, we have successfully demonstrated the feasibility of creating a practical white-box model. The next steps involve conducting clinical validation and multicenter cross-validation.

Trial registration: NCT05537168.

Abstract Image

小儿心脏手术:预测术后并发症的机器学习模型。
目的:管理接受心肺旁路(CPB)心脏手术的儿童是麻醉医师面临的一项重大挑战。机器学习(ML)辅助工具有可能提高对有并发症风险的患者的识别能力,并预测潜在的问题,最终改善预后:我们使用包含 33 个变量和 1364 名受试者的数据集评估了从逻辑回归到支持向量机等六种模型的预测能力。曲线下面积(AUC)和 F1 分数是主要的评估指标。我们的主要目标有两个:第一,开发一个有效的预测模型;第二,创建一个用户友好型综合模型,用于识别高危患者:结果:逻辑回归模型的有效性最高,AUC 为 83.65%,F1 得分为 0.7296,灵敏度和特异度分别为 77.94% 和 76.47%。相比之下,综合三层决策树模型的AUC为72.84%,灵敏度(79.41%)与更复杂的模型相当:我们的机器学习辅助工具提供了一个额外的视角,增强了传统评分方法的预测能力。这些工具可以帮助麻醉医生做出明智的决定。此外,我们还成功证明了创建实用白盒模型的可行性。下一步将进行临床验证和多中心交叉验证:试验注册:NCT05537168。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Anesthesia
Journal of Anesthesia 医学-麻醉学
CiteScore
5.30
自引率
7.10%
发文量
112
审稿时长
3-8 weeks
期刊介绍: The Journal of Anesthesia is the official journal of the Japanese Society of Anesthesiologists. This journal publishes original articles, review articles, special articles, clinical reports, short communications, letters to the editor, and book and multimedia reviews. The editors welcome the submission of manuscripts devoted to anesthesia and related topics from any country of the world. Membership in the Society is not a prerequisite. The Journal of Anesthesia (JA) welcomes case reports that show unique cases in perioperative medicine, intensive care, emergency medicine, and pain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信