Simulating the Gain of a Vertical Array in a Shallow Waveguide with a Rough Sea Surface

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
M. A. Raevsky, V. G. Burdukovskaya
{"title":"Simulating the Gain of a Vertical Array in a Shallow Waveguide with a Rough Sea Surface","authors":"M. A. Raevsky,&nbsp;V. G. Burdukovskaya","doi":"10.1134/S1063771023600651","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of developed wind waves on the gain of a vertical array in shallow ocean waveguides is studied analytically and numerically. An algorithm is proposed for calculating the model correlation matrix of the signal at the aperture of the vertical array, taking into account the interference structure of the acoustic field in the sound channel. The antenna gain is analyzed for three spatial processing methods: standard phased array, optimal linear processing method, and optimal quadratic processing. The numerical simulation results for winter hydrological conditions in the Barents Sea are presented. The main focus is the dependence of the antenna gain values, “smoothed” on the scale of the interference structure of the acoustic field in the waveguide, the wind speed, and seabed sediment characteristics. The influence of intermode correlations on the results of gain simulation for various signal processing methods is analyzed in detail. It is shown that ignoring intermode correlations in the case of a vertical array leads to fundamentally erroneous results with optimal processing methods.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023600651","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of developed wind waves on the gain of a vertical array in shallow ocean waveguides is studied analytically and numerically. An algorithm is proposed for calculating the model correlation matrix of the signal at the aperture of the vertical array, taking into account the interference structure of the acoustic field in the sound channel. The antenna gain is analyzed for three spatial processing methods: standard phased array, optimal linear processing method, and optimal quadratic processing. The numerical simulation results for winter hydrological conditions in the Barents Sea are presented. The main focus is the dependence of the antenna gain values, “smoothed” on the scale of the interference structure of the acoustic field in the waveguide, the wind speed, and seabed sediment characteristics. The influence of intermode correlations on the results of gain simulation for various signal processing methods is analyzed in detail. It is shown that ignoring intermode correlations in the case of a vertical array leads to fundamentally erroneous results with optimal processing methods.

Abstract Image

Abstract Image

模拟具有粗糙海面的浅波导中垂直阵列的增益
通过分析和数值方法研究了已形成的风浪对浅海波导中垂直阵列增益的影响。考虑到声道中声场的干扰结构,提出了计算垂直阵列孔径处信号的模型相关矩阵的算法。分析了三种空间处理方法的天线增益:标准相控阵、最优线性处理方法和最优二次处理方法。介绍了巴伦支海冬季水文条件下的数值模拟结果。主要重点是 "平滑 "天线增益值对波导声场干扰结构尺度、风速和海底沉积物特征的依赖性。详细分析了不同信号处理方法的模式间相关性对增益模拟结果的影响。结果表明,在垂直阵列的情况下,忽略模间相关性会导致最佳处理方法的结果出现根本性错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信