Synergistic augmentation and fundamental mechanistic exploration of β-Ga2O3-rGO photocatalyst for efficient CO2 reduction†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hye-In Jung, Hangyeol Choi, Yu-Jin Song, Jung Han Kim and Yohan Yoon
{"title":"Synergistic augmentation and fundamental mechanistic exploration of β-Ga2O3-rGO photocatalyst for efficient CO2 reduction†","authors":"Hye-In Jung, Hangyeol Choi, Yu-Jin Song, Jung Han Kim and Yohan Yoon","doi":"10.1039/D4NA00408F","DOIUrl":null,"url":null,"abstract":"<p >We explore the novel photodecomposition capabilities of β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00408f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00408f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the novel photodecomposition capabilities of β-Ga2O3 when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga2O3-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga2O3-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga2O3 and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga2O3-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.

Abstract Image

β-Ga2O3-rGO 光催化剂用于高效还原二氧化碳的协同增效和基础机理探索
我们探索了β-Ga2O3 在添加还原氧化石墨烯(rGO)后的新型光分解能力。这项研究利用实时光谱学揭示了光分解的复杂机制,确定了 1 wt.% β-Ga2O3-rGO 的最佳比例,从而大幅提高了亚甲基蓝(MB)的降解效率。我们的研究结果表明,光催化剂的组成与其性能之间存在直接关系,rGO 的合成量会显著影响催化剂的形态,进而影响其光降解效力。1 wt.% β-Ga2O3-rGO成分在同类产品中脱颖而出,与原始β-Ga2O3相比,CO产量明显增加了4.7倍,CO选择性超过98%。这一卓越性能证明了我们的新型 rGO 集成技术所带来的显著改进。这些充满希望的结果凸显了我们定制设计的 β-Ga2O3-rGO 光催化剂在关键环境应用中的潜力,代表着光催化技术的一次重大飞跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信