Tariq J. Al-Musawi, Farag M. A. Altalbawy, Iman Samir Alalaq, Raquel Virginia Colcha Ortiz, Rohit Sharma, Muyassar Norberdiyeva, Mamata Chahar, Usama S. Altimari, Sadeq K. Thajeel, Merwa Alhadrawi, Yuan Liu
{"title":"Si48, SiNT(7, 0), B24N24 and BNNT(7, 0) as Acceptable Anode Materials in Mg-ion Batteries","authors":"Tariq J. Al-Musawi, Farag M. A. Altalbawy, Iman Samir Alalaq, Raquel Virginia Colcha Ortiz, Rohit Sharma, Muyassar Norberdiyeva, Mamata Chahar, Usama S. Altimari, Sadeq K. Thajeel, Merwa Alhadrawi, Yuan Liu","doi":"10.1007/s12633-024-03086-6","DOIUrl":null,"url":null,"abstract":"<div><p>Here, the capacities of S-C<sub>48</sub>, S-C-nanotube, S-B<sub>24</sub>N<sub>24</sub> and S-BN-nanotube in Mg-ion and Na-ion batteries are investigated. The E<sub>cohesive</sub> of Si<sub>48</sub>, C<sub>48</sub>, S-C<sub>48</sub>, B<sub>24</sub>N<sub>24</sub>, S-B<sub>24</sub>N<sub>24</sub>, CNT(7, 0), S-CNT(7, 0), BNNT(7, 0) and S-BNNT(7, 0) are -5.86, -5.98, -6.24, -6.35, -6.47, -6.60, -6.88 and -7.01 eV in gas phase. The electrochemical parameters of Si<sub>48</sub>, C<sub>48</sub>, C-nanotube, B<sub>24</sub>N<sub>24</sub>, BN-nanotube, S-C<sub>48</sub>, S-C-nanotube, S-B<sub>24</sub>N<sub>24</sub> and S-BN-nanotube in batteries are calculated. The V<sub>cell</sub> and C<sub>theory</sub> of Si<sub>48</sub>, C<sub>48</sub>, CNT, B<sub>24</sub>N<sub>24</sub>, BNNT, S-C<sub>48</sub>, S-CNT, S-B<sub>24</sub>N<sub>24</sub> and S-BNNT in Mg-ion batteries are higher than Na-ion batteries. Results demonstrated that the V<sub>cell</sub> and C<sub>theory</sub> of C<sub>48</sub>, S-C<sub>48</sub>, B<sub>24</sub>N<sub>24</sub>, S-B<sub>24</sub>N<sub>24</sub>, CNT(7, 0), S-CNT(7, 0), BNNT(7, 0) and S-BNNT(7, 0) in batteries are higher than corresponding values of Si-nanotubes, C-nanocages and Si-nanocages, C-nanotubes, C-nanocages and BN-nanocages and BN-nanotubes. Results indicated that the S-C<sub>48</sub>, S-B<sub>24</sub>N<sub>24</sub>, S-CNT(7, 0) and S-BNNT(7, 0) have acceptable capacities in metal-ion batteries. Finally, the S-Si<sub>48</sub>, S-BNNT(7, 0) and S-CNT(7, 0) are proposed to utilize in batteries.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 13-14","pages":"5385 - 5392"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03086-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Here, the capacities of S-C48, S-C-nanotube, S-B24N24 and S-BN-nanotube in Mg-ion and Na-ion batteries are investigated. The Ecohesive of Si48, C48, S-C48, B24N24, S-B24N24, CNT(7, 0), S-CNT(7, 0), BNNT(7, 0) and S-BNNT(7, 0) are -5.86, -5.98, -6.24, -6.35, -6.47, -6.60, -6.88 and -7.01 eV in gas phase. The electrochemical parameters of Si48, C48, C-nanotube, B24N24, BN-nanotube, S-C48, S-C-nanotube, S-B24N24 and S-BN-nanotube in batteries are calculated. The Vcell and Ctheory of Si48, C48, CNT, B24N24, BNNT, S-C48, S-CNT, S-B24N24 and S-BNNT in Mg-ion batteries are higher than Na-ion batteries. Results demonstrated that the Vcell and Ctheory of C48, S-C48, B24N24, S-B24N24, CNT(7, 0), S-CNT(7, 0), BNNT(7, 0) and S-BNNT(7, 0) in batteries are higher than corresponding values of Si-nanotubes, C-nanocages and Si-nanocages, C-nanotubes, C-nanocages and BN-nanocages and BN-nanotubes. Results indicated that the S-C48, S-B24N24, S-CNT(7, 0) and S-BNNT(7, 0) have acceptable capacities in metal-ion batteries. Finally, the S-Si48, S-BNNT(7, 0) and S-CNT(7, 0) are proposed to utilize in batteries.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.