Qian Liu, Zengqi Guo, Zhiwei Xu, Cong Wang, Wai-Yeung Wong
{"title":"Conjugated cobalt-based metal complex nanosheet for fabricating high-performance supercapacitor electrode","authors":"Qian Liu, Zengqi Guo, Zhiwei Xu, Cong Wang, Wai-Yeung Wong","doi":"10.1002/eom2.12480","DOIUrl":null,"url":null,"abstract":"<p>In order to cope with the increasingly serious problem of energy shortage, supercapacitors have been developed as a clean and renewable energy source, and the supercapacitors with excellent energy density and long cycle life are imperative. Here, by employing a facile liquid–liquid (L-L) interfacial method at room temperature (RT), a set of two-dimensional (2D) metal complex nanosheets N1-N3 have been synthesized by the facile coordination between Co<sup>2+</sup> ion and 2,3,6,7,10,11-hexaiminotriphenylene (HITP). Given the layered superstructure with well-ordered nanopores, the N1-N3 electrodes displayed excellent capacities of 4751.9, 5770.9 and 6075.2 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, and a good cyclic stability with 92.1% capacity retention after 1000 cycles for the N3 electrode. The asymmetric supercapacitor device with N3 as the positive electrode delivers a maximum energy density of 238.2 Wh kg<sup>−1</sup> at a power density of 1610.1 W kg<sup>−1</sup> and an excellent cycling stability with a capacitance retention of 109.1% after 5000 cycles. This is the best electroactive bottom-up metal complex nanosheet reported so far for use in supercapacitor, which greatly expands the applicability of this 2D nanomaterial in energy device applications.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12480","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to cope with the increasingly serious problem of energy shortage, supercapacitors have been developed as a clean and renewable energy source, and the supercapacitors with excellent energy density and long cycle life are imperative. Here, by employing a facile liquid–liquid (L-L) interfacial method at room temperature (RT), a set of two-dimensional (2D) metal complex nanosheets N1-N3 have been synthesized by the facile coordination between Co2+ ion and 2,3,6,7,10,11-hexaiminotriphenylene (HITP). Given the layered superstructure with well-ordered nanopores, the N1-N3 electrodes displayed excellent capacities of 4751.9, 5770.9 and 6075.2 F g−1 at 1 A g−1, and a good cyclic stability with 92.1% capacity retention after 1000 cycles for the N3 electrode. The asymmetric supercapacitor device with N3 as the positive electrode delivers a maximum energy density of 238.2 Wh kg−1 at a power density of 1610.1 W kg−1 and an excellent cycling stability with a capacitance retention of 109.1% after 5000 cycles. This is the best electroactive bottom-up metal complex nanosheet reported so far for use in supercapacitor, which greatly expands the applicability of this 2D nanomaterial in energy device applications.