The complexity of computing optimum labelings for temporal connectivity

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Nina Klobas , George B. Mertzios , Hendrik Molter , Paul G. Spirakis
{"title":"The complexity of computing optimum labelings for temporal connectivity","authors":"Nina Klobas ,&nbsp;George B. Mertzios ,&nbsp;Hendrik Molter ,&nbsp;Paul G. Spirakis","doi":"10.1016/j.jcss.2024.103564","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is temporally connected if a strict temporal path exists from every vertex <em>u</em> to every other vertex <em>v</em>. This paper studies <em>temporal design</em> problems for undirected temporally connected graphs. Given a connected undirected graph <em>G</em>, the goal is to determine the smallest total number of time-labels <span><math><mo>|</mo><mi>λ</mi><mo>|</mo></math></span> needed to ensure temporal connectivity, where <span><math><mo>|</mo><mi>λ</mi><mo>|</mo></math></span> denotes the sum, over all edges, of the size of the set of labels associated to an edge. The basic problem, called <span>Minimum Labeling</span> (<span>ML</span>) can be solved optimally in polynomial time. We introduce the <span>Min. Aged Labeling</span> (<span>MAL</span>) problem, which involves connecting the graph with an upper-bound on the maximum label, the <span>Min. Steiner Labeling</span> (<span>MSL</span>) problem, focusing on connecting specific important vertices, and the age-restricted version of <span>MSL</span>, <span>Min. Aged Steiner Labeling</span> (<span>MASL</span>). We show that <span>MAL</span> is NP-complete, <span>MASL</span> is W[1]-hard, and while <span>MSL</span> remains NP-hard, it is FPT with respect to the number of terminals.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"146 ","pages":"Article 103564"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002200002400059X/pdfft?md5=47d92c214e02fc0c658d2c49a1fdf6d8&pid=1-s2.0-S002200002400059X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002200002400059X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

A graph is temporally connected if a strict temporal path exists from every vertex u to every other vertex v. This paper studies temporal design problems for undirected temporally connected graphs. Given a connected undirected graph G, the goal is to determine the smallest total number of time-labels |λ| needed to ensure temporal connectivity, where |λ| denotes the sum, over all edges, of the size of the set of labels associated to an edge. The basic problem, called Minimum Labeling (ML) can be solved optimally in polynomial time. We introduce the Min. Aged Labeling (MAL) problem, which involves connecting the graph with an upper-bound on the maximum label, the Min. Steiner Labeling (MSL) problem, focusing on connecting specific important vertices, and the age-restricted version of MSL, Min. Aged Steiner Labeling (MASL). We show that MAL is NP-complete, MASL is W[1]-hard, and while MSL remains NP-hard, it is FPT with respect to the number of terminals.

计算时空连通性最佳标签的复杂性
如果从每个顶点到其他每个顶点都存在一条严格的时间路径,那么这个图就是时间相连的。本文研究无向时间连接图的问题。给定一个连通的无向图,目标是确定确保时间连通性所需的最小时间标签总数,其中表示所有边上与边相关的标签集大小之和。基本问题()可以在多项式时间内优化求解。我们介绍了()问题,它涉及以最大标签的上限连接图;()问题,侧重于连接特定的重要顶点;以及()的年龄限制版本。我们证明,()问题是 NP-完备的,是 W[1]-hard 的,虽然仍然是 NP-hard,但它在终端数量方面是 FPT 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信