Strictly positive polynomials in the boundary of the SOS cone

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Santiago Laplagne , Marcelo Valdettaro
{"title":"Strictly positive polynomials in the boundary of the SOS cone","authors":"Santiago Laplagne ,&nbsp;Marcelo Valdettaro","doi":"10.1016/j.jsc.2024.102359","DOIUrl":null,"url":null,"abstract":"<div><p>We study the boundary of the cone of real polynomials that can be decomposed as a sum of squares (SOS) of real polynomials. This cone is included in the cone of nonnegative polynomials and both cones share a part of their boundary, which corresponds to polynomials that vanish at at least one point. We focus on the part of the boundary which is not shared, corresponding to strictly positive polynomials.</p><p>For the cases of polynomials of degree 6 in 3 variables and degree 4 in 4 variables, this boundary has been completely characterized by G. Blekherman. For the cases of a polynomial <em>f</em> in more variables or of higher degree, results by G. Blekherman, R. Sinn and M. Velasco and other authors based on a conjecture by Ottaviani and Paoletti give bounds for the maximum number of linearly independent polynomials that can appear in an SOS decomposition of <em>f</em>, or equivalently the maximum rank of the matrices in the Gram spectrahedron of <em>f</em>. We show that the same bounds can be obtained from the Eisenbud-Green-Harris conjecture. Combining theoretical results and computational techniques, we compute examples that allow us to prove the optimality of the bounds for all degrees and number of variables. Additionally, we give examples for the following problems: examples in the boundary of the cone that are the sum of less than <em>n</em> squares and have common complex roots, and examples of polynomials in the boundary with SOS length larger than the expected one from the dimension.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000634","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the boundary of the cone of real polynomials that can be decomposed as a sum of squares (SOS) of real polynomials. This cone is included in the cone of nonnegative polynomials and both cones share a part of their boundary, which corresponds to polynomials that vanish at at least one point. We focus on the part of the boundary which is not shared, corresponding to strictly positive polynomials.

For the cases of polynomials of degree 6 in 3 variables and degree 4 in 4 variables, this boundary has been completely characterized by G. Blekherman. For the cases of a polynomial f in more variables or of higher degree, results by G. Blekherman, R. Sinn and M. Velasco and other authors based on a conjecture by Ottaviani and Paoletti give bounds for the maximum number of linearly independent polynomials that can appear in an SOS decomposition of f, or equivalently the maximum rank of the matrices in the Gram spectrahedron of f. We show that the same bounds can be obtained from the Eisenbud-Green-Harris conjecture. Combining theoretical results and computational techniques, we compute examples that allow us to prove the optimality of the bounds for all degrees and number of variables. Additionally, we give examples for the following problems: examples in the boundary of the cone that are the sum of less than n squares and have common complex roots, and examples of polynomials in the boundary with SOS length larger than the expected one from the dimension.

SOS 锥体边界上的严格正多项式
我们研究了可分解为实数多项式平方和(SOS)的实数多项式锥的边界。这个圆锥包含在非负多项式圆锥中,两个圆锥共享一部分边界,这部分边界对应于至少有一点消失的多项式。我们重点讨论不共享边界的部分,它对应于严格正多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信