On Ricci flows with closed and smooth tangent flows

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pak-Yeung Chan, Zilu Ma, Yongjia Zhang
{"title":"On Ricci flows with closed and smooth tangent flows","authors":"Pak-Yeung Chan, Zilu Ma, Yongjia Zhang","doi":"10.1007/s00526-024-02778-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider Ricci flows admitting closed and smooth tangent flows in the sense of Bamler (Structure theory of non-collapsed limits of Ricci flows, 2020. arXiv:2009.03243). The tangent flow in question can be either a tangent flow at infinity for an ancient Ricci flow, or a tangent flow at a singular point for a Ricci flow developing a finite-time singularity. Among other things, we prove: (1) that in these cases the tangent flow must be unique, (2) that if a Ricci flow with finite-time singularity has a closed singularity model, then the singularity is of Type I and the singularity model is the tangent flow at the singular point; this answers a question proposed in Chow et al. (The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects. Mathematical surveys and monographs, vol 163. AMS, Providence, 2010), (3) a dichotomy theorem that characterizes ancient Ricci flows admitting a closed and smooth backward sequential limit.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02778-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider Ricci flows admitting closed and smooth tangent flows in the sense of Bamler (Structure theory of non-collapsed limits of Ricci flows, 2020. arXiv:2009.03243). The tangent flow in question can be either a tangent flow at infinity for an ancient Ricci flow, or a tangent flow at a singular point for a Ricci flow developing a finite-time singularity. Among other things, we prove: (1) that in these cases the tangent flow must be unique, (2) that if a Ricci flow with finite-time singularity has a closed singularity model, then the singularity is of Type I and the singularity model is the tangent flow at the singular point; this answers a question proposed in Chow et al. (The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects. Mathematical surveys and monographs, vol 163. AMS, Providence, 2010), (3) a dichotomy theorem that characterizes ancient Ricci flows admitting a closed and smooth backward sequential limit.

关于具有封闭平稳切线流的利玛窦流
在本文中,我们考虑的是巴姆勒(《利玛窦流非塌缩极限的结构理论》,2020 年,arXiv:2009.03243)意义上的利玛窦流(Ricci flows admitting closed and smooth tangent flows)。对于古老的利玛窦流来说,切向流可以是无穷远处的切向流;对于发展出有限时间奇点的利玛窦流来说,切向流可以是奇点处的切向流。除其他外,我们还证明了:(1)在这些情况下,切向流必须是唯一的;(2)如果具有有限时间奇点的利玛窦流有一个封闭的奇点模型,那么奇点属于 I 型,奇点模型就是奇点处的切向流;这回答了 Chow 等人(《利玛窦流:技术与应用》(The Ricci flow: techniques and applications.第三部分。几何分析方面。Mathematical surveys and monographs, vol 163.AMS, Providence, 2010),(3) 一个二分法定理,描述了古代利玛窦流的特征,它允许一个封闭和光滑的后向序列极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信