On the Effect of Ion Velocity in the Synthesis of Nanopores with a Noncircular Cross Section by the Method of Etching Tracks of Swift Heavy Ions in Olivine
S. A. Gorbunov, P. A. Babaev, A. E. Volkov, R. A. Voronkov, R. A. Rymzhanov
{"title":"On the Effect of Ion Velocity in the Synthesis of Nanopores with a Noncircular Cross Section by the Method of Etching Tracks of Swift Heavy Ions in Olivine","authors":"S. A. Gorbunov, P. A. Babaev, A. E. Volkov, R. A. Voronkov, R. A. Rymzhanov","doi":"10.1134/S1027451024700307","DOIUrl":null,"url":null,"abstract":"<p>The effect of ion velocity in the synthesis of nanopores with a noncircular cross section by the etching tracks of swift heavy ions in olivine is studied. The developed atomistic model of the etching of olivine irradiated with swift heavy ions predicts the possibility of synthesizing nanopores with a noncircular cross section in it. The model consists of connected blocks that describe the sequential stages of track formation and etching. The TREKIS Monte Carlo model describes the initial electronic and lattice excitations in the nanoscale vicinity of the trajectory of an incident ion. These results are used as initial conditions for the molecular-dynamics simulation of structural changes along the ion trajectory. The obtained atomic coordinates after cooling of the structurally damaged region serve as the initial data for an original atomistic model of track etching in olivine. The results of application of the model demonstrate that it is possible to control the cross section of resulting nanopores by changing the orientation of the crystal relative to the direction of irradiation. The presented simulation results for Xe ions demonstrate that the size of the resulting pores depends on the velocity of the incident ion, and not only on its linear energy losses.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 3","pages":"676 - 682"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024700307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of ion velocity in the synthesis of nanopores with a noncircular cross section by the etching tracks of swift heavy ions in olivine is studied. The developed atomistic model of the etching of olivine irradiated with swift heavy ions predicts the possibility of synthesizing nanopores with a noncircular cross section in it. The model consists of connected blocks that describe the sequential stages of track formation and etching. The TREKIS Monte Carlo model describes the initial electronic and lattice excitations in the nanoscale vicinity of the trajectory of an incident ion. These results are used as initial conditions for the molecular-dynamics simulation of structural changes along the ion trajectory. The obtained atomic coordinates after cooling of the structurally damaged region serve as the initial data for an original atomistic model of track etching in olivine. The results of application of the model demonstrate that it is possible to control the cross section of resulting nanopores by changing the orientation of the crystal relative to the direction of irradiation. The presented simulation results for Xe ions demonstrate that the size of the resulting pores depends on the velocity of the incident ion, and not only on its linear energy losses.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.