Distribution characteristics of soil microplastics and their impact on soil physicochemical properties in agricultural areas of the North China plain†

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Yuze Zhou, Ming Dou, Yan Zhang, Kaizi Ning and Yuxuan Li
{"title":"Distribution characteristics of soil microplastics and their impact on soil physicochemical properties in agricultural areas of the North China plain†","authors":"Yuze Zhou, Ming Dou, Yan Zhang, Kaizi Ning and Yuxuan Li","doi":"10.1039/D4EM00242C","DOIUrl":null,"url":null,"abstract":"<p >Microplastic (MPs) pollution has become a global issue, with particular concern regarding MPs in soil. To determine the characteristics of MPs in agricultural production areas and their impact on soil physicochemical properties, soil samples were collected from different land use types in the North China Plain. Layered sampling was conducted and the soil physicochemical properties were determined. A novel image recognition method based on fluorescence staining was proposed for the batch analysis of MPs in the study area. Together with the results of the soil physicochemical properties, the impact of MPs on soil physicochemical properties was analyzed and evaluated. The results showed that the soil MPs abundance in this agricultural area was moderate to low compared to other agricultural areas, with a larger proportion of particle-type and fragment-type MPs smaller than 10 μm. The soil MPs were predominantly composed of polyvinyl chloride (PVC) and polypropylene (PP). MPs abundance was higher in farmland and forest land than in vegetable fields. The impact of MPs on soil physicochemical properties was mainly manifested in the changes in soil structure due to the different MPs characteristics. Apart from abundance, the type of MPs was found to be the main factor affecting soil bulk density, with particle size and shape influencing the soil aggregate structure. MPs may effect the pH values of sandy and loamy soils, primarily by altering the soil porosity and water holding capacity, but also by increasing the area and duration of contact between the soil medium and external water sources. This study revealed the MPs characteristics in agricultural areas as well as the pathways by which they can impact soil physicochemical properties.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 9","pages":" 1556-1570"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00242c","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic (MPs) pollution has become a global issue, with particular concern regarding MPs in soil. To determine the characteristics of MPs in agricultural production areas and their impact on soil physicochemical properties, soil samples were collected from different land use types in the North China Plain. Layered sampling was conducted and the soil physicochemical properties were determined. A novel image recognition method based on fluorescence staining was proposed for the batch analysis of MPs in the study area. Together with the results of the soil physicochemical properties, the impact of MPs on soil physicochemical properties was analyzed and evaluated. The results showed that the soil MPs abundance in this agricultural area was moderate to low compared to other agricultural areas, with a larger proportion of particle-type and fragment-type MPs smaller than 10 μm. The soil MPs were predominantly composed of polyvinyl chloride (PVC) and polypropylene (PP). MPs abundance was higher in farmland and forest land than in vegetable fields. The impact of MPs on soil physicochemical properties was mainly manifested in the changes in soil structure due to the different MPs characteristics. Apart from abundance, the type of MPs was found to be the main factor affecting soil bulk density, with particle size and shape influencing the soil aggregate structure. MPs may effect the pH values of sandy and loamy soils, primarily by altering the soil porosity and water holding capacity, but also by increasing the area and duration of contact between the soil medium and external water sources. This study revealed the MPs characteristics in agricultural areas as well as the pathways by which they can impact soil physicochemical properties.

Abstract Image

华北平原农业区土壤微塑料的分布特征及其对土壤理化性质的影响
微塑料(MPs)污染已成为一个全球性问题,其中土壤中的 MPs 尤为令人担忧。为了解农业生产区土壤中微塑料的特征及其对土壤理化性质的影响,研究人员从华北平原不同土地利用类型中采集了土壤样品。分层取样,测定土壤理化性质。提出了一种基于荧光染色的新型图像识别方法,用于批量分析研究区域的 MPs。结合土壤理化性质结果,分析评价了 MPs 对土壤理化性质的影响。结果表明,与其他农业区相比,该农业区土壤 MPs 丰度处于中等偏低的水平,其中小于 10 μm 的颗粒型和碎片型 MPs 占了相当大的比例。土壤中的 MPs 主要由聚氯乙烯(PVC)和聚丙烯(PP)组成。农田和林地中 MPs 的丰度高于菜地。MPs 对土壤理化性质的影响主要表现在不同 MPs 特性导致的土壤结构变化上。除丰度外,MPs 类型是影响土壤容重的主要因素,粒径和粒形对土壤团粒结构也有影响。多孔质微粒主要通过改变土壤孔隙度和持水能力,同时也通过增加土壤介质与外部水源的接触面积和接触时间,对砂质土壤和壤土的 pH 值产生重要影响。这项研究揭示了农业地区多孔介质的特点,以及它们影响土壤理化性质的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信