A universal strategy for the refined frameworks and improved performance of distinct commercial polyacrylonitriles in sulfur cathodes

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yikun Yi, Feng Hai, Wenting Chen, Xin Gao, Jingyu Guo, Weicheng Xue, Mingtao Li
{"title":"A universal strategy for the refined frameworks and improved performance of distinct commercial polyacrylonitriles in sulfur cathodes","authors":"Yikun Yi, Feng Hai, Wenting Chen, Xin Gao, Jingyu Guo, Weicheng Xue, Mingtao Li","doi":"10.1007/s40843-024-2988-6","DOIUrl":null,"url":null,"abstract":"<p>Sulfurized polyacrylonitrile (SPAN) with the exceptional stability, safety, low cost, and high capacity have been positioned as a highly promising cathode material for next-generation lithium-ion batteries. However, in the market, polyacrylonitrile (PAN) sourced from different suppliers and available at varying prices exhibits significant variations in physical and chemical properties, resulting in diverse behaviors in Li-SPAN batteries. By studying the mechanism, we found that the PAN copolymerization structure leads to the stacking of chain segments which obstructs the embedding of sulfur and lithium ions. Here, we propose a universal strategy for the refined frameworks by an exogenous additive to modify various PAN raw materials, and the battery capacity and cycling performance are obviously improved. As a result, the copolymerized SPAN with a poor original capacity is nearly doubled to over 500 mAh g<sup>−1</sup>, almost comparable to high-quality yet expensively imported products; for the sample with a high initial capacity but fading in ether-based electrolytes, it can be modified to maintain stability over 400 cycles. This strategy offers an alternative approach for SPAN modification that is characterized by its simplicity and low cost, thereby facilitating the large-scale development of Li-SPAN batteries.\n</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40843-024-2988-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfurized polyacrylonitrile (SPAN) with the exceptional stability, safety, low cost, and high capacity have been positioned as a highly promising cathode material for next-generation lithium-ion batteries. However, in the market, polyacrylonitrile (PAN) sourced from different suppliers and available at varying prices exhibits significant variations in physical and chemical properties, resulting in diverse behaviors in Li-SPAN batteries. By studying the mechanism, we found that the PAN copolymerization structure leads to the stacking of chain segments which obstructs the embedding of sulfur and lithium ions. Here, we propose a universal strategy for the refined frameworks by an exogenous additive to modify various PAN raw materials, and the battery capacity and cycling performance are obviously improved. As a result, the copolymerized SPAN with a poor original capacity is nearly doubled to over 500 mAh g−1, almost comparable to high-quality yet expensively imported products; for the sample with a high initial capacity but fading in ether-based electrolytes, it can be modified to maintain stability over 400 cycles. This strategy offers an alternative approach for SPAN modification that is characterized by its simplicity and low cost, thereby facilitating the large-scale development of Li-SPAN batteries.

Abstract Image

改进硫阴极中不同商用聚丙烯腈框架和性能的通用策略
硫化聚丙烯腈(SPAN)具有优异的稳定性、安全性、低成本和高容量,已被定位为下一代锂离子电池极具潜力的正极材料。然而,在市场上,来自不同供应商、价格不一的聚丙烯腈(PAN)在物理和化学性质上存在很大差异,导致其在锂离子电池中的表现各不相同。通过研究其机理,我们发现 PAN 的共聚结构会导致链段堆叠,从而阻碍硫和锂离子的嵌入。在此,我们提出了一种通用的精制框架策略,通过外源添加剂对各种 PAN 原料进行改性,明显提高了电池容量和循环性能。因此,原始容量较差的共聚 SPAN 几乎翻了一番,达到 500 mAh g-1 以上,几乎可与高品质但价格昂贵的进口产品相媲美;对于初始容量较高但在醚基电解质中衰减的样品,可对其进行改性,使其在 400 次循环中保持稳定。这种策略为 SPAN 改性提供了另一种方法,其特点是简单、成本低,从而促进了锂-SPAN 电池的大规模开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信