M. Viviani, A. Kievsky, L. E. Marcucci, L. Girlanda
{"title":"Study of the Alpha-particle Monopole Transition form Factor","authors":"M. Viviani, A. Kievsky, L. E. Marcucci, L. Girlanda","doi":"10.1007/s00601-024-01940-2","DOIUrl":null,"url":null,"abstract":"<div><p>The <span>\\({{}^4\\textrm{He}}\\)</span> monopole form factor is studied by computing the transition matrix element of the electromagnetic charge operator between the <span>\\({{}^4\\textrm{He}}\\)</span> ground-state and the <span>\\(p+{{}^3\\textrm{H}}\\)</span> and <span>\\(n+{{}^3\\textrm{He}}\\)</span> scattering states. The nuclear wave functions are calculated using the hyperspherical harmonic method, by starting from Hamiltonians including two- and three-body forces derived in chiral effective field theory. The electromagnetic charge operator retains, beyond the leading order (impulse approximation) term, also higher order contributions, as relativistic corrections and meson-exchange currents. The results for the monopole form factor are in fair agreement with recent MAMI data. Comparison with other theoretical calculations are also provided.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01940-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The \({{}^4\textrm{He}}\) monopole form factor is studied by computing the transition matrix element of the electromagnetic charge operator between the \({{}^4\textrm{He}}\) ground-state and the \(p+{{}^3\textrm{H}}\) and \(n+{{}^3\textrm{He}}\) scattering states. The nuclear wave functions are calculated using the hyperspherical harmonic method, by starting from Hamiltonians including two- and three-body forces derived in chiral effective field theory. The electromagnetic charge operator retains, beyond the leading order (impulse approximation) term, also higher order contributions, as relativistic corrections and meson-exchange currents. The results for the monopole form factor are in fair agreement with recent MAMI data. Comparison with other theoretical calculations are also provided.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).