Enhancing the solid-state hydrogen storage properties of lithium hydride through thermodynamic tuning with porous silicon nanowires

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-07-16 DOI:10.1039/D4YA00389F
Rama Chandra Muduli, Zhiwen Chen, Fangqin Guo, Ankur Jain, Hiroki Miyaoka, Takayuki Ichikawa and Paresh Kale
{"title":"Enhancing the solid-state hydrogen storage properties of lithium hydride through thermodynamic tuning with porous silicon nanowires","authors":"Rama Chandra Muduli, Zhiwen Chen, Fangqin Guo, Ankur Jain, Hiroki Miyaoka, Takayuki Ichikawa and Paresh Kale","doi":"10.1039/D4YA00389F","DOIUrl":null,"url":null,"abstract":"<p >Solid-state hydrogen storage technology ensures a safer storage method, eliminating the risks of leaks, boiling losses, and explosions in commercial applications. Based on earlier findings, alloying LiH with silicon (Si) yields substantial storage capacity while lowering the energy needed for absorption and decomposition. Herein, the work explores using the derivative of bulk Si (<em>i.e.</em>, porous silicon nanowires (PSiNWs)) after mechanical milling with LiH to improve the thermodynamic properties and uptake capacity. The PSiNWs are synthesized by Ag metal-assisted chemical etching of the bulk Si substrate. Nanopores on the nanowires enhance gas physisorption by overlapping attractive fields from opposing pore walls. The large surface area (∼450 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) of the PSiNWs provides maximum active sites for hydrogen storage. The hydrogen storage capacity of the LiH–PSiNW alloy is evaluated through pressure composition isotherms at different temperatures (400–500 °C range) and ∼4 MPa charging pressure. The maximum observed capacity, ∼3.95 wt%, occurs at 400 °C. The thermodynamic analysis signifies the uniform absorption and desorption enthalpy after alloying LiH with PSiNWs. Hydrogen absorption and desorption enthalpies of ∼118 kJ mol<small><sup>−1</sup></small> H<small><sub>2</sub></small> and ∼115 kJ mol<small><sup>−1</sup></small> H<small><sub>2</sub></small> demonstrate a reduced energy requirement compared to individual LiH. The phase formation and variations before and after hydrogenation are studied by X-ray diffraction. This work investigates using Si nanostructures and light metal hydrides for enhanced hydrogen storage and cyclic functionalities, serving as both a storage material and catalyst.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 9","pages":" 2212-2219"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00389f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00389f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state hydrogen storage technology ensures a safer storage method, eliminating the risks of leaks, boiling losses, and explosions in commercial applications. Based on earlier findings, alloying LiH with silicon (Si) yields substantial storage capacity while lowering the energy needed for absorption and decomposition. Herein, the work explores using the derivative of bulk Si (i.e., porous silicon nanowires (PSiNWs)) after mechanical milling with LiH to improve the thermodynamic properties and uptake capacity. The PSiNWs are synthesized by Ag metal-assisted chemical etching of the bulk Si substrate. Nanopores on the nanowires enhance gas physisorption by overlapping attractive fields from opposing pore walls. The large surface area (∼450 m2 g−1) of the PSiNWs provides maximum active sites for hydrogen storage. The hydrogen storage capacity of the LiH–PSiNW alloy is evaluated through pressure composition isotherms at different temperatures (400–500 °C range) and ∼4 MPa charging pressure. The maximum observed capacity, ∼3.95 wt%, occurs at 400 °C. The thermodynamic analysis signifies the uniform absorption and desorption enthalpy after alloying LiH with PSiNWs. Hydrogen absorption and desorption enthalpies of ∼118 kJ mol−1 H2 and ∼115 kJ mol−1 H2 demonstrate a reduced energy requirement compared to individual LiH. The phase formation and variations before and after hydrogenation are studied by X-ray diffraction. This work investigates using Si nanostructures and light metal hydrides for enhanced hydrogen storage and cyclic functionalities, serving as both a storage material and catalyst.

Abstract Image

通过多孔硅纳米线的热力学调谐增强氢化锂的固态储氢特性
固态储氢技术确保了更安全的储氢方法,消除了商业应用中的泄漏、沸腾损失和爆炸风险。根据早先的研究结果,将 LiH 与硅(Si)合金化可产生巨大的存储容量,同时降低吸收和分解所需的能量。在本文中,研究人员探讨了利用块状硅的衍生物(即多孔硅纳米线(PSiNWs))与 LiH 的机械研磨来改善热力学性质和吸收能力。PSiNWs 是在块硅基底上通过银金属辅助化学蚀刻法合成的。纳米线上的纳米孔通过重叠来自相对孔壁的吸引力场来增强气体物理吸附。PSiNWs 的大表面积(约 450 m2 g-1)为储氢提供了最大的活性位点。在不同温度(400 ℃ - 500 ℃ 范围)和 ~ 4 MPa 充电压力下,通过压力成分等温线评估了 LiH-PSiNWs 合金的储氢能力。观察到的最大容量(约 3.95 wt.%)出现在 400 ℃ 时。热力学分析表明,锂氢(LiH)与 PSiNWs 合金后具有均匀的吸收和解吸焓。吸氢和解吸焓分别为约 118 kJ mol-1 H2 和约 115 kJ mol-1 H2,这表明对能量的需求比单独的 LiH 要低。通过 X 射线衍射研究了氢化前后的相形成和变化。这项工作研究了利用硅纳米结构和轻金属氢化物来增强氢气储存和循环功能,既可用作储存材料,也可用作催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信