{"title":"A MATLAB-based simulator for the study of process control of fed-batch yeast fermentations","authors":"Pavel Hrnčiřík, Jan Kohout","doi":"10.1016/j.ece.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper presents a MATLAB-based simulator for the study of process control of fed-batch yeast fermentations that meets the educational needs of undergraduate and graduate students. Against the background of challenges in interdisciplinary education, the paper examines the evolving environment of simulation tools in the field of bioprocesses<span>. It emphasizes the need for interdisciplinarity to prepare students for the complexities of the modern biotechnology industry. Built with accessibility and flexibility in mind, the simulator offers a modular structure with a graphical user interface (GUI) for novice users and direct access to MATLAB functions for advanced users. This design choice ensures ease of use for students with different programming backgrounds and allows for adaptability to alternative software environments. The introductory sections provide a detailed overview of the simulator development, including the mathematical models that govern biomass growth kinetics<span>, mass transfer, and process quality indicators. Selected process control strategies such as rule-based and feedforward approaches are incorporated in the simulator to enhance the learning experience by allowing students to experiment with different scenarios. The paper concludes by emphasizing the simulator's adaptability, modularity, and user-friendly interface as a valuable asset in educating students about the complexities of </span></span></span>bioprocess control.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"49 ","pages":"Pages 67-77"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772824000137","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a MATLAB-based simulator for the study of process control of fed-batch yeast fermentations that meets the educational needs of undergraduate and graduate students. Against the background of challenges in interdisciplinary education, the paper examines the evolving environment of simulation tools in the field of bioprocesses. It emphasizes the need for interdisciplinarity to prepare students for the complexities of the modern biotechnology industry. Built with accessibility and flexibility in mind, the simulator offers a modular structure with a graphical user interface (GUI) for novice users and direct access to MATLAB functions for advanced users. This design choice ensures ease of use for students with different programming backgrounds and allows for adaptability to alternative software environments. The introductory sections provide a detailed overview of the simulator development, including the mathematical models that govern biomass growth kinetics, mass transfer, and process quality indicators. Selected process control strategies such as rule-based and feedforward approaches are incorporated in the simulator to enhance the learning experience by allowing students to experiment with different scenarios. The paper concludes by emphasizing the simulator's adaptability, modularity, and user-friendly interface as a valuable asset in educating students about the complexities of bioprocess control.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning