{"title":"Potential of microalgae biomass as carotenoids source using natural deep eutectic solvents","authors":"Lucia Sportiello , Fabio Favati , Matteo Zanoni , Stefano Cazzaniga , Nicola Condelli , Emanuele Marchesi , Roberta Tolve","doi":"10.1016/j.fufo.2024.100418","DOIUrl":null,"url":null,"abstract":"<div><p>The potential of microalgae <em>Chlorella vulgaris</em> as a carotenoid source was explored using a novel class of solvents known as Natural Hydrophobic Deep Eutectic Solvents (NaHDESs). Seven low-viscosity NaHDESs, composed exclusively of fatty acids that act as hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) simultaneously, were characterized and assessed for their ability to extract carotenoids from <em>Chlorella vulgaris</em>. Through screening, nonanoic/dodecanoic acid (3:1) was identified as the most effective NaHDES. Its HBA:HBD molar ratio was optimized using Box-Behnken Design. Additionally, the optimization process considered solvent:sample ratio and extraction time, evaluating their impact on carotenoid recovery, specifically focusing on lutein, zeaxanthin, and β-carotene, and antioxidant activity, through ABTS, and DPPH assays.</p><p>Under the optimized extraction conditions, the recovered amounts of total carotenoids, lutein, zeaxanthin, and β-carotene were 2.00 ± 0.31, 1.42 ± 0.01, 0.16 ± 0.01, 0.70 ± 0.01 mg/mL of extract, respectively. The extract also demonstrated significant antioxidant capability, with an inhibition level of 9.13 ± 0.18 % per mL of extract. These findings highlight the superior performance of nonanoic acid/dodecanoic acid (1:1) over acetone and underscore the potential of NaHDESs as a promising alternative to traditional solvents for extracting bioactive compounds from microalgae such as <em>Chlorella vulgaris</em>.</p></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100418"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666833524001242/pdfft?md5=74aacaba37b89e055bd0290a896b1cf8&pid=1-s2.0-S2666833524001242-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524001242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of microalgae Chlorella vulgaris as a carotenoid source was explored using a novel class of solvents known as Natural Hydrophobic Deep Eutectic Solvents (NaHDESs). Seven low-viscosity NaHDESs, composed exclusively of fatty acids that act as hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) simultaneously, were characterized and assessed for their ability to extract carotenoids from Chlorella vulgaris. Through screening, nonanoic/dodecanoic acid (3:1) was identified as the most effective NaHDES. Its HBA:HBD molar ratio was optimized using Box-Behnken Design. Additionally, the optimization process considered solvent:sample ratio and extraction time, evaluating their impact on carotenoid recovery, specifically focusing on lutein, zeaxanthin, and β-carotene, and antioxidant activity, through ABTS, and DPPH assays.
Under the optimized extraction conditions, the recovered amounts of total carotenoids, lutein, zeaxanthin, and β-carotene were 2.00 ± 0.31, 1.42 ± 0.01, 0.16 ± 0.01, 0.70 ± 0.01 mg/mL of extract, respectively. The extract also demonstrated significant antioxidant capability, with an inhibition level of 9.13 ± 0.18 % per mL of extract. These findings highlight the superior performance of nonanoic acid/dodecanoic acid (1:1) over acetone and underscore the potential of NaHDESs as a promising alternative to traditional solvents for extracting bioactive compounds from microalgae such as Chlorella vulgaris.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP