Orthonormal representations, vector chromatic number, and extension complexity

IF 0.8 3区 数学 Q2 MATHEMATICS
Igor Balla
{"title":"Orthonormal representations, vector chromatic number, and extension complexity","authors":"Igor Balla","doi":"10.1112/blms.13109","DOIUrl":null,"url":null,"abstract":"<p>We construct a bipartite generalization of Alon and Szegedy's nearly orthogonal vectors, thereby obtaining strong bounds for several extremal problems involving the Lovász theta function, vector chromatic number, minimum semidefinite rank, nonnegative rank, and extension complexity of polytopes. In particular, we answer a question from our previous work together with Letzter and Sudakov, while also addressing a question of Hrubeš and of Kwan, Sauermann, and Zhao. Along the way, we derive a couple of general lower bounds for the vector chromatic number which may be of independent interest.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2911-2921"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a bipartite generalization of Alon and Szegedy's nearly orthogonal vectors, thereby obtaining strong bounds for several extremal problems involving the Lovász theta function, vector chromatic number, minimum semidefinite rank, nonnegative rank, and extension complexity of polytopes. In particular, we answer a question from our previous work together with Letzter and Sudakov, while also addressing a question of Hrubeš and of Kwan, Sauermann, and Zhao. Along the way, we derive a couple of general lower bounds for the vector chromatic number which may be of independent interest.

正则表达式、向量色度数和扩展复杂度
我们构建了 Alon 和 Szegedy 的近正交向量的两方广义,从而为涉及多面体的 Lovász theta 函数、向量色度数、最小半有限秩、非负秩和扩展复杂性的几个极值问题得到了强边界。特别是,我们回答了之前与莱茨特和苏达科夫共同研究的一个问题,同时也解决了赫鲁贝什以及关、绍尔曼和赵提出的一个问题。在此过程中,我们还推导出了几个向量色度数的一般下界,这些下界可能与我们的兴趣无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信