A Hierarchical Rater Model Approach for Integrating Automated Essay Scoring Models

Aron Fink, Sebastian Gombert, Tuo Liu, Hendrik Drachsler, Andreas Frey
{"title":"A Hierarchical Rater Model Approach for Integrating Automated Essay Scoring Models","authors":"Aron Fink, Sebastian Gombert, Tuo Liu, Hendrik Drachsler, Andreas Frey","doi":"10.1027/2151-2604/a000567","DOIUrl":null,"url":null,"abstract":"Abstract: Essay writing tests, integral in many educational settings, demand significant resources for manual scoring. Automated essay scoring (AES) can alleviate this by automating the process, thereby reducing human effort. However, the multitude of AES models, each varying in its features and scoring approaches, complicates selecting one optimal model, especially when evaluating diverse content-related aspects across multiple rating items. Therefore, we propose a hierarchical rater model-based approach to integrate predictions from multiple AES models, accounting for their distinct scoring behaviors. We investigated its performance on data from a university essay writing test. The proposed method achieved accuracy that was comparable to the best individual AES model. This is a promising result because it additionally reduced the amount of differential item functioning between human and automated scoring and thus established a higher degree of measurement invariance compared to the individual AES models.","PeriodicalId":263823,"journal":{"name":"Zeitschrift für Psychologie","volume":"101 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Psychologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1027/2151-2604/a000567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract: Essay writing tests, integral in many educational settings, demand significant resources for manual scoring. Automated essay scoring (AES) can alleviate this by automating the process, thereby reducing human effort. However, the multitude of AES models, each varying in its features and scoring approaches, complicates selecting one optimal model, especially when evaluating diverse content-related aspects across multiple rating items. Therefore, we propose a hierarchical rater model-based approach to integrate predictions from multiple AES models, accounting for their distinct scoring behaviors. We investigated its performance on data from a university essay writing test. The proposed method achieved accuracy that was comparable to the best individual AES model. This is a promising result because it additionally reduced the amount of differential item functioning between human and automated scoring and thus established a higher degree of measurement invariance compared to the individual AES models.
整合论文自动评分模型的分层评分者模型方法
摘要:作文测试是许多教育机构不可或缺的一部分,需要大量资源进行人工评分。自动作文评分(AES)可以通过自动化流程缓解这一问题,从而减少人力。然而,AES 模型众多,每个模型的功能和评分方法各不相同,这使得选择一个最佳模型变得复杂,尤其是在评估多个评分项目中与内容相关的不同方面时。因此,我们提出了一种基于评分者模型的分层方法,以整合多个 AES 模型的预测结果,同时考虑到它们各自不同的评分行为。我们在大学论文写作测试的数据中研究了该方法的性能。所提出的方法达到了与最佳单个 AES 模型相当的准确度。这是一个很有希望的结果,因为与单个 AES 模型相比,它还减少了人工和自动评分之间的项目功能差异,从而建立了更高程度的测量不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信