On the A-spectrum for A-bounded operators on von-Neumann algebras

IF 0.8 Q2 MATHEMATICS
H. Baklouti, K. Difaoui, M. Mabrouk
{"title":"On the A-spectrum for A-bounded operators on von-Neumann algebras","authors":"H. Baklouti,&nbsp;K. Difaoui,&nbsp;M. Mabrouk","doi":"10.1007/s43036-024-00362-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathfrak {M}\\)</span> be a von Neumann algebra. For a nonzero positive element <span>\\(A\\in \\mathfrak {M}\\)</span>, let <i>P</i> denote the orthogonal projection on the norm closure of the range of <i>A</i> and let <span>\\(\\sigma _A(T) \\)</span> denote the <i>A</i>-spectrum of any <span>\\(T\\in \\mathfrak {M}^A\\)</span>. In this paper, we show that <span>\\(\\sigma _A(T)\\)</span> is a non empty compact subset of <span>\\(\\mathbb {C}\\)</span> and that <span>\\(\\sigma (PTP, P\\mathfrak {M}P)\\subseteq \\sigma _A(T)\\)</span> for any <span>\\(T\\in \\mathfrak {M}^A\\)</span> where <span>\\(\\sigma (PTP, P\\mathfrak {M}P)\\)</span> is the spectrum of <i>PTP</i> in <span>\\(P\\mathfrak {M}P\\)</span>. Sufficient conditions for the equality <span>\\(\\sigma _A(T)=\\sigma (PTP, P\\mathfrak {M}P)\\)</span> to be true are also presented. Moreover, we show that <span>\\(\\sigma _A(T)\\)</span> is finite for any <span>\\(T\\in \\mathfrak {M}^A\\)</span> if and only if <i>A</i> is in the socle of <span>\\(\\mathfrak {M}\\)</span>. Furthermore, we consider the relationship between elements <i>S</i> and <span>\\(T\\in \\mathfrak {M}^A\\)</span> that satisfy the condition <span>\\(\\sigma _A(SX)=\\sigma _A(TX)\\)</span> for all <span>\\(X\\in \\mathfrak {M}^A\\)</span>. Finally, a Gleason–Kahane–Żelazko’s theorem for the <i>A</i>-spectrum is derived.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00362-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathfrak {M}\) be a von Neumann algebra. For a nonzero positive element \(A\in \mathfrak {M}\), let P denote the orthogonal projection on the norm closure of the range of A and let \(\sigma _A(T) \) denote the A-spectrum of any \(T\in \mathfrak {M}^A\). In this paper, we show that \(\sigma _A(T)\) is a non empty compact subset of \(\mathbb {C}\) and that \(\sigma (PTP, P\mathfrak {M}P)\subseteq \sigma _A(T)\) for any \(T\in \mathfrak {M}^A\) where \(\sigma (PTP, P\mathfrak {M}P)\) is the spectrum of PTP in \(P\mathfrak {M}P\). Sufficient conditions for the equality \(\sigma _A(T)=\sigma (PTP, P\mathfrak {M}P)\) to be true are also presented. Moreover, we show that \(\sigma _A(T)\) is finite for any \(T\in \mathfrak {M}^A\) if and only if A is in the socle of \(\mathfrak {M}\). Furthermore, we consider the relationship between elements S and \(T\in \mathfrak {M}^A\) that satisfy the condition \(\sigma _A(SX)=\sigma _A(TX)\) for all \(X\in \mathfrak {M}^A\). Finally, a Gleason–Kahane–Żelazko’s theorem for the A-spectrum is derived.

论 von-Neumann 对象上 A 界算子的 A 谱
让 \(\mathfrak {M}\) 是一个冯-诺依曼代数。对于一个非零正元素 \(A\in \mathfrak {M}/),让 P 表示 A 范围的规范闭包上的正交投影,让 \(\sigma _A(T) \) 表示任意 \(T\in \mathfrak {M}^A\) 的 A 谱。本文将证明 \(\sigma _A(T)\) 是 \(\mathbb {C}\) 的非空紧凑子集,并且 \(\sigma (PTP、Pmathfrak {M}P)\subseteq \sigma _A(T)\) for any \(T\in \mathfrak {M}^A\) where \(\sigma (PTP, P\mathfrak {M}P)\) is the spectrum of PTP in \(P\mathfrak {M}P\).我们还提出了相等 \(\sigma _A(T)=\sigma (PTP, P\mathfrak {M}P)\) 为真的充分条件。此外,我们证明了对于任何 \(T\in \mathfrak {M}^A\)来说,当且仅当 A 在 \(\mathfrak {M}\) 的 socle 中时,\(\sigma _A(T)\) 是有限的。此外,我们还考虑了元素 S 和 \(T\in \mathfrak {M}^A\)之间的关系,对于所有的 \(X\in \mathfrak {M}^A\),它们都满足条件 \(\sigma _A(SX)=\sigma _A(TX)\)。最后,得出了 A 谱的格里森-卡哈内-Żelazko 定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信