Generalized Donaldson–Thomas invariants via Kirwan blowups

IF 1.3 1区 数学 Q1 MATHEMATICS
Jun Li, Y. Kiem, M. Savvas
{"title":"Generalized Donaldson–Thomas invariants via Kirwan blowups","authors":"Jun Li, Y. Kiem, M. Savvas","doi":"10.4310/jdg/1721071499","DOIUrl":null,"url":null,"abstract":"Donaldson-Thomas (abbreviated as DT) theory is a sheaf theoretic technique of enumerating curves on a Calabi-Yau threefold. Classical DT invariants give a virtual count of Gieseker stable sheaves provided that no strictly semistable sheaves exist. This assumption was later lifted by the work of Joyce and Song who defined generalized DT invariants using Hall algebras and the Behrend function, their method being motivic in nature. In this talk, we will present a new approach towards generalized DT theory, obtaining an invariant as the degree of a virtual cycle inside a Deligne-Mumford stack. The main components are an adaptation of Kirwans partial desingularization procedure and recent results on the structure of moduli of sheaves on Calabi-Yau threefolds. Based on joint work with Young-Hoon Kiem and Jun Li. Special Note: Pre-talk at 1:30P. Host: James McKernan Friday, September 28, 2018 2:00 PM AP&M 5829 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1721071499","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Donaldson-Thomas (abbreviated as DT) theory is a sheaf theoretic technique of enumerating curves on a Calabi-Yau threefold. Classical DT invariants give a virtual count of Gieseker stable sheaves provided that no strictly semistable sheaves exist. This assumption was later lifted by the work of Joyce and Song who defined generalized DT invariants using Hall algebras and the Behrend function, their method being motivic in nature. In this talk, we will present a new approach towards generalized DT theory, obtaining an invariant as the degree of a virtual cycle inside a Deligne-Mumford stack. The main components are an adaptation of Kirwans partial desingularization procedure and recent results on the structure of moduli of sheaves on Calabi-Yau threefolds. Based on joint work with Young-Hoon Kiem and Jun Li. Special Note: Pre-talk at 1:30P. Host: James McKernan Friday, September 28, 2018 2:00 PM AP&M 5829 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
通过柯万吹胀的广义唐纳森-托马斯不变式
唐纳森-托马斯(简称 DT)理论是一种枚举 Calabi-Yau 三折上曲线的剪子理论技术。经典的 DT 变量给出了 Gieseker 稳定剪切的虚拟计数,前提是不存在严格半稳态的剪切。乔伊斯和宋后来利用霍尔代数和贝伦德函数定义了广义的 DT 变量,从本质上讲,他们的方法是动机式的。在本讲座中,我们将介绍一种实现广义 DT 理论的新方法,即通过德利尼-芒福德堆栈内部虚拟循环的度数获得不变式。其主要组成部分是对 Kirwans 部分去奇化过程的改编,以及关于 Calabi-Yau 三折上剪子的模结构的最新成果。基于与 Young-Hoon Kiem 和 Jun Li 的合作成果。特别提示:下午1:30预讲。主持人: James McKernan
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信