Shawn SH Choi , Peter JH Ryu , Kyuil Sim , Jaedong Seong , Jae Wook Song , Misoon Mah , Douglas DS Kim
{"title":"AstroLibrary: A library for real-time conjunction assessment and optimal collision avoidance","authors":"Shawn SH Choi , Peter JH Ryu , Kyuil Sim , Jaedong Seong , Jae Wook Song , Misoon Mah , Douglas DS Kim","doi":"10.1016/j.jsse.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Geospace is crowded due to the proliferation of satellites and space debris and will become more crowded with the increasing deployment of new space missions. This trend is rapidly increasing the probability of collisions between space objects. Space objects fly at extreme speeds; hence, the consequences of collisions are catastrophic. However, accurate and efficient conjunction assessment (CA) and collision avoidance (COLA) have long been challenging, even with the current space catalogues of O(10<sup>4</sup>) size. As the space catalogue size increases owing to the increased number of new satellites, improved sensor capabilities, and Kessler syndrome, the situation will worsen unless a paradigm-transforming computational method is devised. Here, we present the SpaceMap method, which can perform real-time CA and near-real-time COLA for O(10<sup>6</sup>) or more objects, provided that the spatiotemporal proximity amongst satellites is represented in a Voronoi diagram. As the most concise and efficient data structure for spatiotemporal reasoning amongst moving objects, Voronoi diagrams play a key role in the mathematical and computational basis for a new genre of artificial intelligence (AI) called space–time AI, which can find the best solutions to CA/COLA and other space decision-making problems in longer timeline windows. The algorithms are implemented in C++ and are available on GitHub as AstroLibrary, which has RESTful APIs and Python packages that can be called from application programs. Using this library, anyone with elementary programming skills can easily develop efficient applications for challenging spatiotemporal problems.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246889672400106X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Geospace is crowded due to the proliferation of satellites and space debris and will become more crowded with the increasing deployment of new space missions. This trend is rapidly increasing the probability of collisions between space objects. Space objects fly at extreme speeds; hence, the consequences of collisions are catastrophic. However, accurate and efficient conjunction assessment (CA) and collision avoidance (COLA) have long been challenging, even with the current space catalogues of O(104) size. As the space catalogue size increases owing to the increased number of new satellites, improved sensor capabilities, and Kessler syndrome, the situation will worsen unless a paradigm-transforming computational method is devised. Here, we present the SpaceMap method, which can perform real-time CA and near-real-time COLA for O(106) or more objects, provided that the spatiotemporal proximity amongst satellites is represented in a Voronoi diagram. As the most concise and efficient data structure for spatiotemporal reasoning amongst moving objects, Voronoi diagrams play a key role in the mathematical and computational basis for a new genre of artificial intelligence (AI) called space–time AI, which can find the best solutions to CA/COLA and other space decision-making problems in longer timeline windows. The algorithms are implemented in C++ and are available on GitHub as AstroLibrary, which has RESTful APIs and Python packages that can be called from application programs. Using this library, anyone with elementary programming skills can easily develop efficient applications for challenging spatiotemporal problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.