Extraction of soliton solutions for the fractional Kaup-Boussinesq system: A comparative study

H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc
{"title":"Extraction of soliton solutions for the fractional Kaup-Boussinesq system: A comparative study","authors":"H. Alsaud, N. Raza, S. Arshed, A. R. Butt, Mustafa Inc","doi":"10.31349/revmexfis.70.041302","DOIUrl":null,"url":null,"abstract":"This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.","PeriodicalId":207412,"journal":{"name":"Revista Mexicana de Física","volume":"89 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.70.041302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivatives such as β-derivative and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM) and improved tan (φ(ζ)/2)-expansion approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of some of the obtained solutions to discuss the fractional effects.
分数 Kaup-Boussinesq 系统孤子解的提取:比较研究
本文基于寻找分数 Kaup-Boussinesq (FKB) 系统的孤子解。研究中使用了分数导数,如 β-导数和截断 M-分数导数。统一方法、广义投影里卡提方程法(GPREM)和改进的 tan (φ(ζ)/2) 展开方法被有效地用于获得亮孤子、暗孤子、奇异孤子、周期孤子、暗-奇组合孤子和暗-亮组合孤子。此外,还通过三维和二维数值模拟,对部分求解结果的图形进行了分析,以讨论分数效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信