Xin-Wei Yao , Wei-Wei Xing , Ke-Chen Zheng , Chu-Feng Qi , Xiang-Yang Li , Qi Song
{"title":"GTDIM: Grid-based Two-stage Dynamic Incentive Mechanism for Mobile Crowd Sensing","authors":"Xin-Wei Yao , Wei-Wei Xing , Ke-Chen Zheng , Chu-Feng Qi , Xiang-Yang Li , Qi Song","doi":"10.1016/j.pmcj.2024.101964","DOIUrl":null,"url":null,"abstract":"<div><p>Mobile Crowd Sensing (MCS) technology, as an emerging data collection paradigm, offers distinct advantages, particularly in applications like smart city management. However, existing researches inadequately address the comprehensive solution to the problem of reliable task allocation according to the requirements such as task budget, sensory data quality, and real-time data collection, especially under varying participant engagement in MCS systems. To bridge this gap, we propose the Grid-based Two-stage Dynamic Incentive Mechanism (GTDIM). In the first stage, the Candidate Participant Set (CPS) establishment phase, participants receive compensation for collecting sensory data when a sufficient number are available. When participants are insufficient, additional rewards inspired by the grid division of sensing areas are progressively offered to attract more participants. In the subsequent stage, utilizing the established CPS, participants are selected through a greedy algorithm based on the newly devised Participant Matching Index (PMI), which integrates various participant features. Extensive simulation results reveal the impact of PMI on participant selection. Numerical findings conclusively demonstrate GTDIM’s superior performance over baseline incentive mechanisms in terms of task assignment ratio, participant payment, and especially when dealing with larger sensing tasks.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000890","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile Crowd Sensing (MCS) technology, as an emerging data collection paradigm, offers distinct advantages, particularly in applications like smart city management. However, existing researches inadequately address the comprehensive solution to the problem of reliable task allocation according to the requirements such as task budget, sensory data quality, and real-time data collection, especially under varying participant engagement in MCS systems. To bridge this gap, we propose the Grid-based Two-stage Dynamic Incentive Mechanism (GTDIM). In the first stage, the Candidate Participant Set (CPS) establishment phase, participants receive compensation for collecting sensory data when a sufficient number are available. When participants are insufficient, additional rewards inspired by the grid division of sensing areas are progressively offered to attract more participants. In the subsequent stage, utilizing the established CPS, participants are selected through a greedy algorithm based on the newly devised Participant Matching Index (PMI), which integrates various participant features. Extensive simulation results reveal the impact of PMI on participant selection. Numerical findings conclusively demonstrate GTDIM’s superior performance over baseline incentive mechanisms in terms of task assignment ratio, participant payment, and especially when dealing with larger sensing tasks.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.