{"title":"On the stability of prestressed beams undergoing nonlinear flexural free oscillations","authors":"Laura Di Gregorio, Walter Lacarbonara","doi":"10.1098/rspa.2024.0057","DOIUrl":null,"url":null,"abstract":"We study the nonlinear free undamped motions of a hinged-hinged beam exhibiting geometric stretching-induced nonlinearity and arbitrary initial conditions. We treat the governing integral-partial-differential equation of motion as an infinite dimensional Hamiltonian system. We analytically obtain a quantitative Birkhoff Normal Form via a nonlinear coordinate transformation that yields the reduced (modulation) equations describing the free oscillations to within a certain nonlinear order with an estimate of the reminder. The obtained solutions provide a very precise description of small amplitude oscillations over large time scales. The analytical optimization of the involved estimates yields time stability results obtained for plausible values of the physical quantities and of the perturbation parameter. The role played by internal resonances in determining the time stability of the solution is highlighted and discussed. We show that initial conditions with a finite number of eigenfunctions yield bounded solutions living on invariant subspaces of the involved modes at all times. Conversely, initial conditions comprising the full (infinite) spectrum of eigenfunctions provide solutions for which time stability for all times cannot be stated.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"4 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2024.0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the nonlinear free undamped motions of a hinged-hinged beam exhibiting geometric stretching-induced nonlinearity and arbitrary initial conditions. We treat the governing integral-partial-differential equation of motion as an infinite dimensional Hamiltonian system. We analytically obtain a quantitative Birkhoff Normal Form via a nonlinear coordinate transformation that yields the reduced (modulation) equations describing the free oscillations to within a certain nonlinear order with an estimate of the reminder. The obtained solutions provide a very precise description of small amplitude oscillations over large time scales. The analytical optimization of the involved estimates yields time stability results obtained for plausible values of the physical quantities and of the perturbation parameter. The role played by internal resonances in determining the time stability of the solution is highlighted and discussed. We show that initial conditions with a finite number of eigenfunctions yield bounded solutions living on invariant subspaces of the involved modes at all times. Conversely, initial conditions comprising the full (infinite) spectrum of eigenfunctions provide solutions for which time stability for all times cannot be stated.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.