{"title":"Bivariate polynomial reduction and elimination ideal over finite fields","authors":"Gilles Villard","doi":"10.1016/j.jsc.2024.102367","DOIUrl":null,"url":null,"abstract":"<div><p>Given two polynomials <em>a</em> and <em>b</em> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></math></span> which have no non-trivial common divisors, we prove that a generator of the elimination ideal <span><math><mo>〈</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>〉</mo><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> can be computed in quasi-linear time. To achieve this, we propose a randomized algorithm of the Monte Carlo type which requires <span><math><msup><mrow><mo>(</mo><mi>d</mi><mi>e</mi><mi>log</mi><mo></mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> bit operations, where <em>d</em> and <em>e</em> bound the input degrees in <em>x</em> and in <em>y</em> respectively.</p><p>The same complexity estimate applies to the computation of the largest degree invariant factor of the Sylvester matrix associated with <em>a</em> and <em>b</em> (with respect to either <em>x</em> or <em>y</em>), and of the resultant of <em>a</em> and <em>b</em> if they are sufficiently generic, in particular such that the Sylvester matrix has a unique non-trivial invariant factor.</p><p>Our approach is to exploit reductions to problems of minimal polynomials in quotient algebras of the form <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>/</mo><mo>〈</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>〉</mo></math></span>. By proposing a new method based on structured polynomial matrix division for computing with the elements of the quotient, we succeed in improving the best-known complexity bounds.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000713","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Given two polynomials a and b in which have no non-trivial common divisors, we prove that a generator of the elimination ideal can be computed in quasi-linear time. To achieve this, we propose a randomized algorithm of the Monte Carlo type which requires bit operations, where d and e bound the input degrees in x and in y respectively.
The same complexity estimate applies to the computation of the largest degree invariant factor of the Sylvester matrix associated with a and b (with respect to either x or y), and of the resultant of a and b if they are sufficiently generic, in particular such that the Sylvester matrix has a unique non-trivial invariant factor.
Our approach is to exploit reductions to problems of minimal polynomials in quotient algebras of the form . By proposing a new method based on structured polynomial matrix division for computing with the elements of the quotient, we succeed in improving the best-known complexity bounds.
给定 Fq[x,y] 中的两个多项式 a 和 b 没有非难公共除数,我们证明可以在准线性时间内计算出消元理想 〈a,b〉∩Fq[x]的生成器。为此,我们提出了一种蒙特卡洛随机算法,它需要 (delogq)1+o(1) 比特运算,其中 d 和 e 分别表示 x 和 y 中的输入度数。同样的复杂度估计适用于计算与 a 和 b 相关的西尔维斯特矩阵的最大度不变因子(关于 x 或 y),以及 a 和 b 的结果(如果它们足够通用,特别是西尔维斯特矩阵有一个唯一的非三维不变因子)。通过提出一种基于结构多项式矩阵除法的新方法来计算商的元素,我们成功地改进了最著名的复杂度边界。
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.