Viewing Pulmonary Arterial Hypertension Pathogenesis and Opportunities for Disease-Modifying Therapy Through the Lens of Biomass

IF 8.4 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Matthew L. Steinhauser MD , Bradley A. Maron MD
{"title":"Viewing Pulmonary Arterial Hypertension Pathogenesis and Opportunities for Disease-Modifying Therapy Through the Lens of Biomass","authors":"Matthew L. Steinhauser MD ,&nbsp;Bradley A. Maron MD","doi":"10.1016/j.jacbts.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>Fibroproliferative remodeling of distal pulmonary arterioles is a cornerstone characteristic of pulmonary arterial hypertension (PAH). Data from contemporary quantitative imaging suggest that anabolic synthesis of macromolecular substrate, defined here as <em>biomass</em>, is the proximate event that causes vascular remodeling via pathogenic changes to DNA, collagen, cytoskeleton, and lipid membranes. Modifying biomass is achievable but requires tilting the balance in favor of endogenous degradation over synthetic pathways in order to advance the first-ever disease-modifying PAH pharmacotherapy. Viewing PAH pathobiology through the lens of biomass represents an opportunity to decipher novel determinants of disease inception and inform interventions that induce reverse remodeling.</div></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 10","pages":"Pages 1252-1263"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X24001827","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroproliferative remodeling of distal pulmonary arterioles is a cornerstone characteristic of pulmonary arterial hypertension (PAH). Data from contemporary quantitative imaging suggest that anabolic synthesis of macromolecular substrate, defined here as biomass, is the proximate event that causes vascular remodeling via pathogenic changes to DNA, collagen, cytoskeleton, and lipid membranes. Modifying biomass is achievable but requires tilting the balance in favor of endogenous degradation over synthetic pathways in order to advance the first-ever disease-modifying PAH pharmacotherapy. Viewing PAH pathobiology through the lens of biomass represents an opportunity to decipher novel determinants of disease inception and inform interventions that induce reverse remodeling.
从生物质角度看肺动脉高压发病机制和疾病调节疗法的机遇
远端肺动脉的纤维增生性重塑是肺动脉高压(PAH)的基本特征。当代定量成像数据表明,大分子底物(此处定义为生物质)的合成代谢是通过 DNA、胶原蛋白、细胞骨架和脂膜的致病性变化导致血管重塑的近因。改变生物质是可以实现的,但需要将天平倾向于内源性降解,而不是合成途径,这样才能推进首次改变疾病的 PAH 药物疗法。从生物质的角度来看待 PAH 病理生物学,是解读疾病发生的新决定因素并为诱导逆向重塑的干预措施提供信息的一个机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JACC: Basic to Translational Science
JACC: Basic to Translational Science CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
14.20
自引率
1.00%
发文量
161
审稿时长
16 weeks
期刊介绍: JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信