Quantifying 3D time-resolved kinematics and kinetics during rapid granular compaction, Part I: Quasistatic and dynamic deformation regimes

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Quantifying 3D time-resolved kinematics and kinetics during rapid granular compaction, Part I: Quasistatic and dynamic deformation regimes","authors":"","doi":"10.1016/j.jmps.2024.105765","DOIUrl":null,"url":null,"abstract":"<div><p>Impacts in granular materials occur over a velocity range of a few hundred m/s in manufacturing processes to several km/s during asteroid impacts. Different energy dissipation mechanisms are activated during impacts based on the kinetic energy of the impactor and the properties of the granular material. Material response during impact can be classified into two broad regimes – quasi-static and dynamic – characterized by the nature of grain and pore deformation and the deformation morphology of grain interfaces. In the quasi-static regime, all energy from the impactor is utilized in pore (or void) collapse, while in the dynamic regime, excess energy after pore closure leads to material melting or jetting and often to non-planar grain interfaces. To understand the transition between the quasi-static and dynamic regimes, <em>in-situ</em> measurements of temperature, local stresses, and porosity at the grain scale are critical but often not possible due to short timescales and inherent heterogeneity of granular materials. In this work, we use X-ray phase contrast imaging (XPCI) to visualize grain-scale deformation during rapid granular compaction and observe phenomena such as plastic flow-induced pore collapse, compaction wave propagation, and the morphology of the grain-grain interfaces. Alongside these experiments, we develop and validate a mesoscale numerical model that incorporates each sample’s microstructure and captures realistic plasticity and thermal effects. Using this validated model, we quantify the temperatures, pressures, and porosity as granular materials are compacted in both quasi-static and dynamic deformation regimes. By comparing our results with existing theoretical models, we find that the continuum definitions of quasi-static and dynamic regimes needs to be updated for a realistic heterogeneous granular media. Specifically, the two regimes can coexist in the same assembly of grains at different time instants due to spatial heterogeneity and rapid dissipation of impact energy away from the point of impact. Finally, we quantify the energies associated with different dissipation mechanisms for individual grains using coupled numerical and analytical techniques. Our methodology allows us to obtain full 3D kinematics and kinetics of rapidly compacted granular materials at both the mesoscale and the grain scale.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962400231X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Impacts in granular materials occur over a velocity range of a few hundred m/s in manufacturing processes to several km/s during asteroid impacts. Different energy dissipation mechanisms are activated during impacts based on the kinetic energy of the impactor and the properties of the granular material. Material response during impact can be classified into two broad regimes – quasi-static and dynamic – characterized by the nature of grain and pore deformation and the deformation morphology of grain interfaces. In the quasi-static regime, all energy from the impactor is utilized in pore (or void) collapse, while in the dynamic regime, excess energy after pore closure leads to material melting or jetting and often to non-planar grain interfaces. To understand the transition between the quasi-static and dynamic regimes, in-situ measurements of temperature, local stresses, and porosity at the grain scale are critical but often not possible due to short timescales and inherent heterogeneity of granular materials. In this work, we use X-ray phase contrast imaging (XPCI) to visualize grain-scale deformation during rapid granular compaction and observe phenomena such as plastic flow-induced pore collapse, compaction wave propagation, and the morphology of the grain-grain interfaces. Alongside these experiments, we develop and validate a mesoscale numerical model that incorporates each sample’s microstructure and captures realistic plasticity and thermal effects. Using this validated model, we quantify the temperatures, pressures, and porosity as granular materials are compacted in both quasi-static and dynamic deformation regimes. By comparing our results with existing theoretical models, we find that the continuum definitions of quasi-static and dynamic regimes needs to be updated for a realistic heterogeneous granular media. Specifically, the two regimes can coexist in the same assembly of grains at different time instants due to spatial heterogeneity and rapid dissipation of impact energy away from the point of impact. Finally, we quantify the energies associated with different dissipation mechanisms for individual grains using coupled numerical and analytical techniques. Our methodology allows us to obtain full 3D kinematics and kinetics of rapidly compacted granular materials at both the mesoscale and the grain scale.

量化快速颗粒压实过程中的三维时间分辨运动学和动力学,第一部分:准静态和动态变形机制
颗粒材料的撞击速度范围从制造过程中的几百米/秒到小行星撞击时的几千米/秒。根据撞击物的动能和颗粒材料的特性,撞击过程中会启动不同的能量消散机制。撞击过程中的材料响应可分为准静态和动态两大类,其特征在于颗粒和孔隙变形的性质以及颗粒界面的变形形态。在准静态条件下,来自冲击器的所有能量都被孔隙(或空隙)塌陷所利用,而在动态条件下,孔隙闭合后的多余能量会导致材料熔化或喷射,通常会导致晶粒界面不平整。要了解准静态和动态状态之间的转变,对温度、局部应力和晶粒尺度的孔隙率进行现场测量至关重要,但由于时间尺度短和颗粒材料固有的异质性,这往往是不可能的。在这项工作中,我们利用 X 射线相衬成像 (XPCI) 对快速颗粒压实过程中的颗粒尺度变形进行可视化,并观察塑性流动引起的孔隙塌陷、压实波传播和颗粒-颗粒界面形态等现象。在进行这些实验的同时,我们还开发并验证了一个中尺度数值模型,该模型结合了每个样品的微观结构,并捕捉到了真实的塑性和热效应。利用这个经过验证的模型,我们对颗粒材料在准静态和动态变形状态下压实时的温度、压力和孔隙率进行了量化。通过将我们的结果与现有的理论模型进行比较,我们发现准静态和动态状态的连续定义需要针对现实的异质颗粒介质进行更新。具体来说,由于空间异质性和撞击能量在远离撞击点时的快速消散,这两种状态可以在不同的时间时刻共存于同一个颗粒集合体中。最后,我们利用数值和分析耦合技术量化了与单个晶粒的不同耗散机制相关的能量。我们的方法使我们能够在中尺度和颗粒尺度上获得快速压实颗粒材料的全三维运动学和动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信