Yitao Jiao , Jian Dai , Zhenhao Fan , Junye Cheng , Guangping Zheng , Lawan Grema , Junwen Zhong , Hai-Feng Li , Dawei Wang
{"title":"Overview of high-entropy oxide ceramics","authors":"Yitao Jiao , Jian Dai , Zhenhao Fan , Junye Cheng , Guangping Zheng , Lawan Grema , Junwen Zhong , Hai-Feng Li , Dawei Wang","doi":"10.1016/j.mattod.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>In 2004, Yeh and Cantor introduced high-entropy alloys (HEAs), which maximize configurational entropy by utilizing nearly equal elemental molar ratios. These HEAs are valuable for exploring the central regions of phase diagrams. Building on this concept, Rost et al. proposed entropy-stabilized oxides in 2015, revealing that high-entropy oxides (HEOs) exhibit structural stability driven by entropy. This article provides a comprehensive overview of HEOs, with a specific focus on high-entropy oxide ceramics (HEOCs). The paper explores the origins of the high-entropy concept and the fundamental effects of high-entropy materials. It examines entropy from its basic definition and investigates microscopic atomic distribution, crystal-level distortions, and electronic structures. Additionally, the article introduces theoretical prediction methods applied to high-entropy materials. Furthermore, this review systematically summarizes HEOCs, encompassing three key aspects: crystal structure, preparation methods, and performance applications. Finally, the review concludes by proposing future research directions based on the current progress in HEOCs.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"77 ","pages":"Pages 92-117"},"PeriodicalIF":21.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001068","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In 2004, Yeh and Cantor introduced high-entropy alloys (HEAs), which maximize configurational entropy by utilizing nearly equal elemental molar ratios. These HEAs are valuable for exploring the central regions of phase diagrams. Building on this concept, Rost et al. proposed entropy-stabilized oxides in 2015, revealing that high-entropy oxides (HEOs) exhibit structural stability driven by entropy. This article provides a comprehensive overview of HEOs, with a specific focus on high-entropy oxide ceramics (HEOCs). The paper explores the origins of the high-entropy concept and the fundamental effects of high-entropy materials. It examines entropy from its basic definition and investigates microscopic atomic distribution, crystal-level distortions, and electronic structures. Additionally, the article introduces theoretical prediction methods applied to high-entropy materials. Furthermore, this review systematically summarizes HEOCs, encompassing three key aspects: crystal structure, preparation methods, and performance applications. Finally, the review concludes by proposing future research directions based on the current progress in HEOCs.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.