Modified Titanium dioxide-based photocatalysts for water treatment: Mini review

Xiaowen Yang, Ran Zhao, Hong Zhan, Hexiang Zhao, Yingnan Duan, Zhurui Shen
{"title":"Modified Titanium dioxide-based photocatalysts for water treatment: Mini review","authors":"Xiaowen Yang,&nbsp;Ran Zhao,&nbsp;Hong Zhan,&nbsp;Hexiang Zhao,&nbsp;Yingnan Duan,&nbsp;Zhurui Shen","doi":"10.1016/j.efmat.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium dioxide (TiO<sub>2</sub>), recognized for its affordability, low cost, high chemical stability, and eco-friendliness, has garnered extensive research attention in recent years. But because of the TiO<sub>2</sub> band gap (&gt;3.2eV) seriously limit the use of visible light, and fast electron-hole composite in TiO<sub>2</sub> often lead to poor photocatalytic activity and low quantum yield. Therefore, TiO<sub>2</sub> needs to be modified. Modification can change the broadband gap of TiO<sub>2</sub>, enhance light absorption, thus affect the important means of photocatalytic efficiency. In this review, we introduce the crystal form and photocatalytic mechanism of TiO<sub>2</sub>, and review some modification strategies of TiO<sub>2</sub>, including doping modification, construction of heterojunctions, crystal plane engineering and defect engineering. Furthermore, we review the application of modified TiO<sub>2</sub>-based photocatalytic materials in water treatment, including the removal of dye contaminants, antibiotics, advanced oxidative sterilization, and finally explore the challenges and prospects of modified TiO<sub>2</sub>-based photocatalysts.</div></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"3 1","pages":"Pages 1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773058124000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium dioxide (TiO2), recognized for its affordability, low cost, high chemical stability, and eco-friendliness, has garnered extensive research attention in recent years. But because of the TiO2 band gap (>3.2eV) seriously limit the use of visible light, and fast electron-hole composite in TiO2 often lead to poor photocatalytic activity and low quantum yield. Therefore, TiO2 needs to be modified. Modification can change the broadband gap of TiO2, enhance light absorption, thus affect the important means of photocatalytic efficiency. In this review, we introduce the crystal form and photocatalytic mechanism of TiO2, and review some modification strategies of TiO2, including doping modification, construction of heterojunctions, crystal plane engineering and defect engineering. Furthermore, we review the application of modified TiO2-based photocatalytic materials in water treatment, including the removal of dye contaminants, antibiotics, advanced oxidative sterilization, and finally explore the challenges and prospects of modified TiO2-based photocatalysts.

Abstract Image

用于水处理的改性二氧化钛基光催化剂:小型综述
二氧化钛(TiO2)因其经济实惠、成本低廉、化学稳定性高和环保等优点,近年来受到了广泛的研究关注。但由于 TiO2 的带隙(3.2eV)严重限制了其对可见光的利用,而且 TiO2 中快速的电子-空穴复合往往导致光催化活性差、量子产率低。因此,需要对 TiO2 进行改性。改性可以改变 TiO2 的宽带隙,增强光吸收,从而影响光催化效率的重要手段。在这篇综述中,我们介绍了 TiO2 的晶体形态和光催化机理,并综述了 TiO2 的一些改性策略,包括掺杂改性、构建异质结、晶面工程和缺陷工程。此外,我们还综述了改性 TiO2 基光催化材料在水处理中的应用,包括去除染料污染物、抗生素、高级氧化杀菌等,最后探讨了改性 TiO2 基光催化剂面临的挑战和发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信