{"title":"Enhancing the pure water splitting using carbon-iron oxide–carbon nitride (Fe2O3-C/CN) heterostructure","authors":"","doi":"10.1016/j.arabjc.2024.105902","DOIUrl":null,"url":null,"abstract":"<div><p>Highly efficient pure photocatalysts for water-splitting applications have long been plagued by structure imperfectness, narrowband light absorption, rapid charge recombination, and sluggish surface reaction kinetics. Herein we report a Z-scheme heterojunction photocatalyst made of Fe<sub>2</sub>O<sub>3</sub>, CN, and a conductive carbon layer (C) at the interface of the two materials (Fe<sub>2</sub>O<sub>3</sub>-C/CN). The structure has been characterized using a range of physicochemical and photo-electrochemical techniques. Compared to pristine Fe<sub>2</sub>O<sub>3</sub>, the Fe<sub>2</sub>O<sub>3</sub>-C/CN photocatalyst revealed superior photogenerated charge carriers, transport efficiency, and suppressed recombination process along with the conductive carbon layer acting as a mediator. The optimum composite of (5 wt% Fe<sub>2</sub>O<sub>3</sub>-C/CN) shows excellent activity towards pure water splitting, which reached 408 and 199 μmol/g.h for H<sub>2</sub> and O<sub>2</sub> evolution respectively, and a solar-to-hydrogen conversion efficiency of approximately 0.29 % when used for the pure water splitting process. Such a superior efficiency and production rate offer great potential for pure water splitting, and provide an alternative solution to future green energy production processes.</p></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878535224003046/pdfft?md5=1401a6b19ddf45b1642d388baf5318ce&pid=1-s2.0-S1878535224003046-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878535224003046","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Highly efficient pure photocatalysts for water-splitting applications have long been plagued by structure imperfectness, narrowband light absorption, rapid charge recombination, and sluggish surface reaction kinetics. Herein we report a Z-scheme heterojunction photocatalyst made of Fe2O3, CN, and a conductive carbon layer (C) at the interface of the two materials (Fe2O3-C/CN). The structure has been characterized using a range of physicochemical and photo-electrochemical techniques. Compared to pristine Fe2O3, the Fe2O3-C/CN photocatalyst revealed superior photogenerated charge carriers, transport efficiency, and suppressed recombination process along with the conductive carbon layer acting as a mediator. The optimum composite of (5 wt% Fe2O3-C/CN) shows excellent activity towards pure water splitting, which reached 408 and 199 μmol/g.h for H2 and O2 evolution respectively, and a solar-to-hydrogen conversion efficiency of approximately 0.29 % when used for the pure water splitting process. Such a superior efficiency and production rate offer great potential for pure water splitting, and provide an alternative solution to future green energy production processes.
期刊介绍:
The Arabian Journal of Chemistry is an English language, peer-reviewed scholarly publication in the area of chemistry. The Arabian Journal of Chemistry publishes original papers, reviews and short reports on, but not limited to: inorganic, physical, organic, analytical and biochemistry.
The Arabian Journal of Chemistry is issued by the Arab Union of Chemists and is published by King Saud University together with the Saudi Chemical Society in collaboration with Elsevier and is edited by an international group of eminent researchers.