{"title":"Development of high-performance Fe-rich Fe–P–C amorphous alloys with enhanced magnetization and low coercivity","authors":"","doi":"10.1016/j.pnsc.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><p><span>Using melt spinning technology, we successfully synthesized a series of Fe-rich Fe–P–C amorphous alloys exhibiting high saturation magnetization (</span><em>B</em><sub>s</sub>), low coercivity (<em>H</em><sub>c</sub>), and excellent bending ductility. These alloys exhibit low <em>H</em><sub>c</sub> values ranging from 4.1 to 7.2 A/m, and high <em>B</em><sub>s</sub> values ranging from 1.58 to 1.68 T. Particularly, after annealing at 588 K for 900 s, the Fe<sub>83</sub>P<sub>11</sub>C<sub>6</sub><span> amorphous alloy showed extraordinary soft magnetic properties: </span><em>B</em><sub>s</sub> up to 1.68 T, <em>H</em><sub>c</sub><span> only 4.7 A/m, and the core loss at approximately 1.5 W/kg under the condition of 0.5 T and 50 Hz, all of which surpass the reported Fe–P–C ternary amorphous and nanocrystalline alloys<span>. These Fe-rich Fe–P–C alloy ribbon samples exhibit favorable bending ductility in both the as-spun and annealed states. Their simple alloy composition, outstanding soft magnetic properties, and excellent flexibility collectively make these soft magnetic alloys highly promising candidate materials for industrial applications.</span></span></p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001588","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using melt spinning technology, we successfully synthesized a series of Fe-rich Fe–P–C amorphous alloys exhibiting high saturation magnetization (Bs), low coercivity (Hc), and excellent bending ductility. These alloys exhibit low Hc values ranging from 4.1 to 7.2 A/m, and high Bs values ranging from 1.58 to 1.68 T. Particularly, after annealing at 588 K for 900 s, the Fe83P11C6 amorphous alloy showed extraordinary soft magnetic properties: Bs up to 1.68 T, Hc only 4.7 A/m, and the core loss at approximately 1.5 W/kg under the condition of 0.5 T and 50 Hz, all of which surpass the reported Fe–P–C ternary amorphous and nanocrystalline alloys. These Fe-rich Fe–P–C alloy ribbon samples exhibit favorable bending ductility in both the as-spun and annealed states. Their simple alloy composition, outstanding soft magnetic properties, and excellent flexibility collectively make these soft magnetic alloys highly promising candidate materials for industrial applications.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.