Hybrid intelligence framework for optimizing shear capacity of lightweight FRP-reinforced concrete beams

Q1 Engineering
Iman Faridmehr , Moncef L. Nehdi , Mohammad Ali Sahraei , Kiyanets Aleksandr Valerievich , Chiara Bedon
{"title":"Hybrid intelligence framework for optimizing shear capacity of lightweight FRP-reinforced concrete beams","authors":"Iman Faridmehr ,&nbsp;Moncef L. Nehdi ,&nbsp;Mohammad Ali Sahraei ,&nbsp;Kiyanets Aleksandr Valerievich ,&nbsp;Chiara Bedon","doi":"10.1016/j.ijlmm.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study rigorously assesses the shear capacity of fiber-reinforced polymer (FRP) reinforced concrete (RC) beams as a lightweight material alternative, scrutinizing the efficacy of the Eurocode and ACI design codes. Leveraging a dataset of 260 experimental FRP-RC beam cases, two distinct Artificial Neural Network (ANN) models were developed using the Levenberg-Marquardt algorithm. Beams with and without stirrups were considered, with parameters including beam width (<span><math><mrow><mi>b</mi></mrow></math></span>), depth (<span><math><mrow><mi>d</mi></mrow></math></span>), length (<span><math><mrow><mi>L</mi></mrow></math></span>), concrete compressive strength (<span><math><mrow><msubsup><mi>f</mi><mi>c</mi><mo>′</mo></msubsup></mrow></math></span>), FRP modulus of elasticity (<span><math><mrow><msub><mi>E</mi><mrow><mi>f</mi><mi>r</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mrow><mi>f</mi><mi>s</mi></mrow></msub></mrow></math></span>) and FRP reinforcement ratios (<span><math><mrow><msub><mi>ρ</mi><mi>f</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>ρ</mi><mrow><mi>f</mi><mi>s</mi></mrow></msub></mrow></math></span>). Multi-objective optimization was deployed to integrate Genetic Algorithms (GA) and <em>fmincon</em> to optimize beam parameters for maximizing the shear capacity, <span><math><mrow><msub><mi>V</mi><mi>c</mi></msub></mrow></math></span>. Sensitivity analysis allowed to quantify the influence of each parameter, revealing that <span><math><mrow><mi>b</mi></mrow></math></span> and <span><math><mrow><mi>d</mi></mrow></math></span> significantly affect <span><math><mrow><msub><mi>V</mi><mi>c</mi></msub></mrow></math></span>, with sensitivity scores of 0.39 and 0.35, respectively. The optimization process, highlighted by a 3D scatter plot, dynamically illustrated trade-offs among key design parameters (<span><math><mrow><msub><mi>ρ</mi><mi>f</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>ρ</mi><mrow><mi>f</mi><mi>s</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>d</mi></mrow></math></span>), giving insights into the complex interplay in FRP beam design. The hybrid intelligence models reached superior predictive accuracy over traditional codes, achieving <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> values of 0.89. Notably, for beams without stirrups, model predictions closely matched experimental data, with a lower average ratio (1.02) compared to Eurocode (1.65) and ACI (1.58). Principal Component Analysis (PCA) has elucidated the intricate interactions among variables, thereby deepening insights into the structural dynamics of FRP-RC beams. Incorporating artificial intelligence, sophisticated optimization methodologies, and thorough statistical evaluations establishes a holistic approach for the structural examination of FRP-RC beams, providing improved precision and valuable viewpoints for the refinement of future designs.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 1","pages":"Pages 14-27"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study rigorously assesses the shear capacity of fiber-reinforced polymer (FRP) reinforced concrete (RC) beams as a lightweight material alternative, scrutinizing the efficacy of the Eurocode and ACI design codes. Leveraging a dataset of 260 experimental FRP-RC beam cases, two distinct Artificial Neural Network (ANN) models were developed using the Levenberg-Marquardt algorithm. Beams with and without stirrups were considered, with parameters including beam width (b), depth (d), length (L), concrete compressive strength (fc), FRP modulus of elasticity (Efr, Efs) and FRP reinforcement ratios (ρf, ρfs). Multi-objective optimization was deployed to integrate Genetic Algorithms (GA) and fmincon to optimize beam parameters for maximizing the shear capacity, Vc. Sensitivity analysis allowed to quantify the influence of each parameter, revealing that b and d significantly affect Vc, with sensitivity scores of 0.39 and 0.35, respectively. The optimization process, highlighted by a 3D scatter plot, dynamically illustrated trade-offs among key design parameters (ρf, ρfs, d), giving insights into the complex interplay in FRP beam design. The hybrid intelligence models reached superior predictive accuracy over traditional codes, achieving R2 values of 0.89. Notably, for beams without stirrups, model predictions closely matched experimental data, with a lower average ratio (1.02) compared to Eurocode (1.65) and ACI (1.58). Principal Component Analysis (PCA) has elucidated the intricate interactions among variables, thereby deepening insights into the structural dynamics of FRP-RC beams. Incorporating artificial intelligence, sophisticated optimization methodologies, and thorough statistical evaluations establishes a holistic approach for the structural examination of FRP-RC beams, providing improved precision and valuable viewpoints for the refinement of future designs.
优化轻质玻璃钢加固混凝土梁抗剪能力的混合智能框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信