Fault Detection of Multi-Wheeled Robot Consensus Based on EKF

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Actuators Pub Date : 2024-07-01 DOI:10.3390/act13070253
A. Jouili, B. Boussaid, A. Zouinkhi, M. N. Abdelkrim
{"title":"Fault Detection of Multi-Wheeled Robot Consensus Based on EKF","authors":"A. Jouili, B. Boussaid, A. Zouinkhi, M. N. Abdelkrim","doi":"10.3390/act13070253","DOIUrl":null,"url":null,"abstract":"Synchronizing a network of robots in consensus is an important task for cooperative work. Detecting faults in a network of robots in consensus is a much more important task. In considering a formation of Wheeled Mobile Robots (WMRs) in a master–slave architecture modeled by graph theory, the main objective of this study was to detect and isolate a fault that appears on a robot of this formation in order to remove it from the formation and continue the execution of the assigned task. In this context, we exploit the extended Kalman filter (EKF) to estimate the state of each robot, generate a residual, and deduce whether a fault exists. The implementation of this technique was proven using a Matlab simulator.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13070253","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Synchronizing a network of robots in consensus is an important task for cooperative work. Detecting faults in a network of robots in consensus is a much more important task. In considering a formation of Wheeled Mobile Robots (WMRs) in a master–slave architecture modeled by graph theory, the main objective of this study was to detect and isolate a fault that appears on a robot of this formation in order to remove it from the formation and continue the execution of the assigned task. In this context, we exploit the extended Kalman filter (EKF) to estimate the state of each robot, generate a residual, and deduce whether a fault exists. The implementation of this technique was proven using a Matlab simulator.
基于 EKF 的多轮机器人故障检测共识
以协商一致的方式同步机器人网络是协同工作的一项重要任务。在达成共识的机器人网络中检测故障则是一项更为重要的任务。考虑到以图论为模型的主从架构中的轮式移动机器人(WMR)编队,本研究的主要目标是检测和隔离编队中出现故障的机器人,以便将其从编队中移除,继续执行分配的任务。在这种情况下,我们利用扩展卡尔曼滤波器(EKF)来估计每个机器人的状态,生成残差,并推断故障是否存在。我们使用 Matlab 仿真器证明了这一技术的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信