A. Jouili, B. Boussaid, A. Zouinkhi, M. N. Abdelkrim
{"title":"Fault Detection of Multi-Wheeled Robot Consensus Based on EKF","authors":"A. Jouili, B. Boussaid, A. Zouinkhi, M. N. Abdelkrim","doi":"10.3390/act13070253","DOIUrl":null,"url":null,"abstract":"Synchronizing a network of robots in consensus is an important task for cooperative work. Detecting faults in a network of robots in consensus is a much more important task. In considering a formation of Wheeled Mobile Robots (WMRs) in a master–slave architecture modeled by graph theory, the main objective of this study was to detect and isolate a fault that appears on a robot of this formation in order to remove it from the formation and continue the execution of the assigned task. In this context, we exploit the extended Kalman filter (EKF) to estimate the state of each robot, generate a residual, and deduce whether a fault exists. The implementation of this technique was proven using a Matlab simulator.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"17 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13070253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronizing a network of robots in consensus is an important task for cooperative work. Detecting faults in a network of robots in consensus is a much more important task. In considering a formation of Wheeled Mobile Robots (WMRs) in a master–slave architecture modeled by graph theory, the main objective of this study was to detect and isolate a fault that appears on a robot of this formation in order to remove it from the formation and continue the execution of the assigned task. In this context, we exploit the extended Kalman filter (EKF) to estimate the state of each robot, generate a residual, and deduce whether a fault exists. The implementation of this technique was proven using a Matlab simulator.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.