Probabilistic forecasting of cross-sectional returns: A Bayesian dynamic factor model with heteroskedasticity

IF 7.1 2区 经济学 Q1 ECONOMICS
Dan Weitzenfeld
{"title":"Probabilistic forecasting of cross-sectional returns: A Bayesian dynamic factor model with heteroskedasticity","authors":"Dan Weitzenfeld","doi":"10.1016/j.ijforecast.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><div><span>The M6 Financial Forecasting Competition forecasting track required probabilistic forecasting of monthly returns for a universe of 100 assets. This paper describes a Bayesian dynamic factor model with </span>heteroskedasticity<span> that was used to win the year-long forecasting track. The model’s strengths include modularity, handling of missing data, and regularization through hierarchical distributions. Probability modeling and recent advances in probabilistic programming languages make defining such models and performing inference straightforward.</span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1477-1484"},"PeriodicalIF":7.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702400061X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The M6 Financial Forecasting Competition forecasting track required probabilistic forecasting of monthly returns for a universe of 100 assets. This paper describes a Bayesian dynamic factor model with heteroskedasticity that was used to win the year-long forecasting track. The model’s strengths include modularity, handling of missing data, and regularization through hierarchical distributions. Probability modeling and recent advances in probabilistic programming languages make defining such models and performing inference straightforward.
横截面回报的概率预测:具有异方差性的贝叶斯动态因子模型
M6金融预测竞赛预测轨道要求对100种资产的月回报进行概率预测。本文描述了一种具有异方差的贝叶斯动态因子模型,并将其用于一年的预测轨迹。该模型的优势包括模块化、缺失数据的处理以及通过分层分布的正则化。概率建模和概率编程语言的最新进展使得定义这样的模型和执行推理变得简单明了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信